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Abstract

Modern collider phenomenology continues to transition towards precision tests of
the standard model of particle physics. The Monte-Carlo event generators which
underpin these studies are consequently being upgraded to meet the require-
ments of emerging high-energy experiments. In this thesis, we improve one such
numerical code, the VINCIA parton-shower event generator. We first develop
the all-orders formalism necessary to describe the complexity of parton-shower
topologies, including a detailed implementation. Subsequently, we demonstrate
the theorised shortcomings associated with hard, wide-angle gluon emission in the
context of logarithmic accuracy. Finally, we propose a novel ‘jet-antenna’ kine-
matics scheme designed to overcome these deficiencies, and make comparisons to
the existing dipole-antenna recoil map. With our initial model we observe an im-
provement across a significant portion of the phase space surveyed, and prepare
for implementation in a fully-fledged shower algorithm.
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I also thank Christian Preuss, Stefan Höche and Javira Altmann for their contributions to
this work. I thank Paul Lasky and my fellow honours students for their guidance and banter.
Finally, I give special thanks to Ellie Mead, Imogen Stephenson, Niamh Corbett, William
Searle, Russel Demos and Clare Olding for the morale I needed to see this thesis through.

Submitted June 30, 2023 PHS4100 Honours Thesis - Page II



Wilton Deany Monash University Australia

1 An Introduction to Parton Shower Event Generators

The energy scales accessible by modern particle colliders can achieve energies up to order 10
TeV, which correspond to interactions on a length scale of 10−18m [1]. If an experimentalist
wanted to directly observe the production and decay of a fundamental particle at this length
scale, they would consequently need an impossibly small detector. Naturally they instead
resort to indirect observation, whereby they attempt to detect the products of the process
they are interested in. Such products will typically be an assortment of leptons, mesons, and
baryons, which will be intercepted and analysed by the apparati at a macroscopic scale.

These indirect observations have motivated the development of general-purpose Monte-
Carlo event generators (MCEGs). Such programs are ubiquitous in modern collider-physics
since they enable the simulation the high-energy dynamics not directly measurable by de-
tectors. MCEGs facilitate this capability by providing a map from the fundamental process
of interest, the initial state ∣i⟩, to the experimental detection, the final state ∣f⟩. They thus
describe the intermediate evolution which is inaccessible to the detector. There exists a vari-
ety of MCEGs, each with a unique formalism for this evolution. They are ‘general-purpose’,
in the sense that they are designed to calculate, at least approximately, the majority of ob-
servables that we could wish to study, with a single underlying model. They do this with
stochastic ‘Monte-Carlo’ methods, which iteratively generate a given collider event.

Fully fledged event generators typically simulate the event with two consecutive mod-
els; a ‘parton-shower’ model, followed by a ‘hadronisation’ model. The former describes the
bremsstrahlung cascade (shower) of intense, approximately collimated radiation which fol-
lows the initial process we are interested in. The latter describes the process by which much
of this newly emitted brehmstrallung will stabilise into bound states; the hadrons detected
by the apparati. The hadronisation process produces the final state ∣f⟩, which is what the
detector measures. The parton shower is the intermediate model which maps the initial state
∣i⟩ to the pre-hadronisation ‘final’ state ∣h⟩. The hadronisation model then takes over and
maps ∣h⟩ → ∣f⟩.

This work will focus primarily on parton-shower models, making reference to hadronisa-
tion models [2–5] only when relevant to the broader context.

Historically, multiple event generators have facilitated the development of modern particle
physics. The numerical codes PYTHIA [6], HERWIG [7] and SHERPA [8] are particularly
ubiquitous. A number of smaller-in-scope generator models have also been instrumental,
with a long history of meta-studies and prototype formalisms, cementing event-generation as
a sub-field of study in its own right.

Of particular interest to this work is one such contemporary shower model, the VINCIA
formalism [9, 10]. The Vincia event generator is based on the Pythia formalism. Most of
the following work will describe methods and results from Vincia, referring to other relevant
formalisms where relevant. Namely, the ALARIC [11], ARIADNE [12], DIRE [13], and Pan-
Scales [14] event generators.

This work will begin with an introduction to parton shower models in general, including
a specific discussion of the Vincia parton-shower formalism. Within section 2 we will discuss
the application of this formalism in an explicit parton-shower algorithm. These sections are
intended to describe all aspects of the formalism needed to assess the logarithmic-accuracy
of Vincia. Section 3 is dedicated to the discussion of some known issues with existing parton-
showers in the same family as Vincia. This relies upon the framework of logarithmic re-
summation, and represents ongoing development. Finally, section 4 introduces the initial
implementation of a novel kinematics map partially designed to rectify some of the afore-
mentioned shortcomings.
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1.1 Elements of Quantum Chromodynamics

uq(pµ)
incoming quark

vq(pµ)
incoming anti-quark

ϵag(pµ)
incoming gluon

outgoing quark

uq(pµ)
outgoing anti-quark

vq(pµ)
outgoing gluon

ϵag(pµ)∗

CF

quark-gluon vertex

−igstaγµ

gluon-quark/anti-quark vertex

TR

−igstaγµ

pµ1

CA

three-gluon vertex

−gsfabc[gαβ(p1 − p2)γ+
gβγ(p2 − p3)α+
gγα(p3 − p1)β]

pµ2

pµ3

µ ν

a b

gluon propagator

−igµν(pµ−pν)2δab

quark propagator

i/p−m

Figure 1: Relevant Feynman rules for QCD. Vertex factors for the three possible processes
are given, with the associated colour factors (Casimirs), CA, CF and TR. Greek indices are
reserved for four-vectors while Latin indices a, b, c = {1,⋯,8} denote colour combinations.

Parton-shower event generators primarily model the dynamics of hadronic interactions. This
capability enables the study of the subatomic constituents, quarks and gluons, collectively
dubbed ‘partons’. In the context of MCEGs, partons are described within the framework of
perturbative quantum field theory (pQFT). Specifically, the behaviour of partons is modelled
by the theory of quantum chromodynamics (QCD); an SU(3) gauge theory. QCD is similar
to its electromagnetic counterpart, quantum electrodynamics (QED), with which this work
assumes some familiarity. However, there remains a number of distinguishing features, made
apparent by the associated QCD Lagrangian

LQCD = ∑
q

ψ̄iq(iγµ(Dµ)ij −mqδij)ψqj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
QCD Dirac Lagrangian

−1
4
F a
µνF

aµν , (1.1)

ψiq =
⎛
⎜⎜
⎝

ψred
q

ψgreen
q

ψblue
q

⎞
⎟⎟
⎠
, (Dµ)ij = ∂µδij − igstaijGa

µ, F a
µν = ∂µGa

ν − ∂νGa
µ + gsf

abcGb
µG

c
ν

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-Abelian term

, (1.2)

where q runs over the six quark flavours. This Lagrangian has the same overall structure as
the U(1) QED Lagrangian, including a QCD-analogue of the Maxwell equations. However
unlike the single electric charge of the U(1) theory, the SU(3) structure of QCD endows it with
three ‘colour charges’, {red, green, blue}, indexed by the three-component spinor ψiq. The
anti-spinor ψ̄iq is likewise associated with the anti-colour charges {cyan, magenta, yellow}.
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The gluons live in the adjoint representation and consequently have eight components, often
represented as combinations of colour and anti-colour. These components are tracked by
a = {1, ...,8} and assigned to the gluon fieldGa, the Gell-Mann generators ta, and the structure
constants fabc which are beyond the scope of this work [15].

The factor gs gives the coupling strength between the quark spinor-field and the gluon
vector-field, analogous to e in QED. However the non-Abelian term in the gluon field-strength
tensor F a

µν allows for the gluon field to couple to itself, with strength gs. Owing to the
structure of U(1), this is not a feature of QED, where the analogous boson, the photon,
cannot interact with itself. Consequently, a gluon can radiate gluons.

1.2 Calculating Observables

In the context of collider experiments, the quantity of interest is typically a differential
cross-section dσ measured with respect to some observable O. This is just a measure of the
normalised ‘amount’ of that observable per dO. Perturbative quantum field theory provides
the framework to calculate the differential cross-section

dσ

dO = ∫ dΦ ∣M∣2δ(O −O({p}Φ)). (1.3)

The integral is over dΦ, the Lorentz-invariant phase-space measure. The associated δ-function
ensures momentum-conservation for the set of momenta {p} in the phase-space Φ. The
squared matrix-element ∣M∣2 contains the information about the possible QCD interactions.
For our purposes,M describes the transition from the initial state ∣i⟩ to the final hadronisa-
tion state ∣h⟩. Simple matrix-elements may be calculated with the associated QCD Feynman-
rules presented in Fig. 1. However, the complexity of modern high-energy topologies renders
Feynman diagram calculations for such events intractable. This intractability is the problem
which MCEGs are intended to circumvent.

This may be understood by considering a high-energy interaction which produces two
quarks, a state which we label X. There are an infinite number of Feynman diagrams which
contribute to this process, which may be conveniently depicted as a superposition of states
with the ⟨bra∣ket⟩ notation,

MX =

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M(0)

X (LO)

+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M(1)

X (NLO)

+ ⋯ +

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M(2)

X (NNLO)

+ ⋯ +

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M(n)

X (NnLO)

+⋯

(1.4)

The above notation allows us to track the order in perturbation theory of each contributing
matrix-element. The leading-order (LO) term M(0)

X is often called the Born-level contri-
bution. Subsequent contributions represent virtual-corrections to the Born-level, labelled
next-to-leading-order (NLO) and so forth. The number of additional virtual particles is de-
noted by the superscript (n). The QCD Feynman-rules dictate that each newly emitted
particle is associated with a vertex factor, containing a factor of gs. Hence, the Born-level
process contains one factor of gs, while the NLO process has three factors of gs, and so-on.

Eq. (1.3) requires the squared the matrix-element ∣MX ∣2. We calculate the first few
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terms:

∣MX ∣2 =M†
XMX = ∣M(0)

X ∣
2 + 2Re[(M(0)

X )
†(M(1)

X )] + ∣M
(1)
X ∣

2 + ⋯

(1.5)

=

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(αs)

+2Re

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(α2

s)

+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(α3

s)

+⋯

where αs = g2s/4π is the strong coupling constant. The three inner-products presented above
have two, four, and six factors of gs respectively, and are thus of order one, two and three in αs
respectively. Provided αs is small, the series may be truncated at a user defined order in αs.
Nevertheless, a truly general-purpose parton-shower model must provide an approximate all-
orders description of the evolution. The following sections are dedicated to this requirement.

It is important to note that αs is not constant, but in-fact depends on the energy scale
Q2 of the process in question [16]. This ‘running’ of the strong coupling will be explored in
section 2.2, but for brevity, lower scales correspond to higher values of αs(Q2). Below scales
of approximately ΛQCD = 1 GeV, the aforementioned perturbative series will not suffice to
describe the behaviour of QCD. Since the parton-shower is a strictly perturbative model, it
is thus necessary to transition to non-perturbative hadronisation models below this scale.

1.3 Factorisation and Universality

The Lagrangian for QCD presented in Eq. (1.2) is approximately scale invariant, under
transformations of the form xµ → λxµ [17]. This symmetry is broken by the running of αs,
but at high-energy scales, asymptotic freedom allows for weakly-interacting quark and gluon
fields [18, 19]. Such scale-invariance manifests itself in the structure of QCD matrix-elements,
which contain ‘universal’ singularities, regardless of the order in perturbation theory [20].
This structure is referred to as ‘universality’. Since these divergent regions of phase space
provide the dominant evolution of the shower, the way to proceed is as follows.

• Calculate the ‘radiation function’ corresponding to the dominant probability that the
parton shower transitions from an n-parton state to an n + 1-parton state, via the
emission of brehmstrallung.

• Then, universality guarantees this radiation function will apply at all orders of αs, and
can hence be used to iteratively generate radiative corrections to arbitrary topologies.

• Modify this radiation function for the specific emission being considered, and attempt
to correct for any finite terms not accounted for by the singularity structure.

• Ensure that this description remains unitary, and conserve overall momentum by al-
lowing parton momenta to vary appropriately as new emissions are included.

Following these guiding principles, we thus begin with a brief derivation of the desired ra-
diation functions. Such functions vary between parton-shower formalisms, with the Vincia
architecture explicitly designed for ‘dipole-antenna’ functions. These antenna functions de-
scribe the probability for two colour-connected partons to emit a third parton in a 2 → 3
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‘dipole’ process. The intention is thus to generate an n-parton topology by sequentially per-
forming 2 → 3 emissions, where one of the existing dipoles will be selected to radiate. The
antenna functions may be derived following the example of [21]. We begin by writing the
full, all-orders expansion to the cross section in Eq. (1.3),

dσ

dO∣
S

= ∫ dΦX [∣M(0)
X ∣2 + 2Re[M(0)†

X M
(0)
X ]]δ(O −O({p}X))

+ ∫ dΦX+1 ∣M(0)
X+1∣2δ(O −O({p}X+1)) + O(α3

s). (1.6)

For brevity only the NLO (order αs and α2
s) terms are explicitly written. The matrix element

M(ℓ)
X+k denotes k radiative corrections (real emissions of new particles) to the Born-level

process and ℓ virtual corrections (internal loops). S denotes the final topology after the
parton shower has concluded, described by the final-state momenta {p}. Each term in the
series only contains a subset of this total phase space, such as {p}X , denoting the momenta
in the Born level, and so-forth. The δ-functions ensure that the integrals are only carried out
over the phase-space relevant to each process.

We proceed by factoring out the Born-level term dΦX ∣M(0)
X ∣

2
,

dσ

dO∣
S

= ∫ dΦX ∣M(0)
X ∣

2
⎡⎢⎢⎢⎢⎣
(1 +

2Re[M(0)†
X M

(1)
X ]

∣M(0)
X ∣

2 )δ(O −O({p}X))

+ ∫
dΦX+1

dΦX

∣M(0)
X+1∣2

∣M(0)
X ∣

2 δ(O −O({p}X+1)) + O(α3
s)
⎤⎥⎥⎥⎥⎦
. (1.7)

The above formulation of the cross section is an example of ‘factorisation’, where expression
now consists of matrix-element ratios. It’s these ratios which contain the universal singular-
structure we intend to harness.

The term in the square brackets is dubbed the ‘shower operator’, Ŝ. It will be responsible
for the evolution from the Born-level state to an arbitrarily complex n-parton final state.
To proceed, the KLN theorem [22, 23] may be invoked to replace the dependence on virtual

correctionsM(ℓ)
X with integrals over the corresponding radiative correctionM(0)

X+k. In doing
so we ensure unitarity, since the divergence in one matrix-element ratio is now suppressed
by the other. We have also implicitly removed the finite, non-divergent terms which must be
restored a-posteriori [24, 25]. This allows the shower operator to be written as

Ŝ = (1 − ∫
dΦX+1

dΦX

∣M(0)
X+1∣2

∣M(0)
X ∣

2 )δ(O −O({p}X))

+ ∫
dΦX+1

dΦX

∣M(0)
X+1∣2

∣M(0)
X ∣

2 δ(O −O({p}X+1)) + O(α3
s). (1.8)

Next, we seek to cast this operator as a recursive Markov chain. We define the scales Q2
start

and Q2
stop to be the initial and final scales of this chain, and define Q2

emit to be the intermediate
scale at which dipole emission occurs. Then the shower operator may be written recursively
in the following form [26]

Ŝ({p}n,Q2
start,Q

2
stop) =∆({p}X ,Q2

start,Q
2
stop)δ(O −O({p}X))

+ ∫
Q2

stop

Q2
start

dΦX+1

dΦX

∣M(0)
X+1∣2

∣M(0)
X ∣

2 ∆({p}X ,Q2
start,Q

2
emit)Ŝ({p}X+1,Q2

emit,Q
2
stop). (1.9)
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Subsequently, we introduce the Sudakov factor ∆ to maintain unitarity [27]. It is derived
in the manner of traditional nuclear decay models, by requiring that the second line of the
shower operator be equal to the negative derivative of the first,

∆({p}n,Q2
1,Q

2
2) = exp [ − ∫

Q2
2

Q2
1

dΦX+1

dΦX

∣M(0)
X+1∣2

∣M(0)
X ∣

2 ]. (1.10)

The Sudakov factor describes the probability of no evolution between two scales Q2
1 and Q2

2.
Hence the first term of Eq. (1.9) gives the probability of no emission, while the second term
gives the probability of at-least one emission. The nested recursion of the Sudakov factor
restarts from the scale Q2

emit, allowing for subsequent emissions below this scale. Note that we
have implicitly imposed an ordering on the scale Q2. Taking Q2

start > Q2
stop, we consequently

require that each successive emission occur at a lower scale than the previous.

1.4 Antenna Functions and Conventions

The next task is to derive the dipole-antenna functions explicitly. There are many such
functions, each with variations in the singular structure depending on the context. Here we
will focus on deriving the universal singular structure and defer the reader to more detailed
descriptions [28].

The advantage of the dipole-antenna formalism is that the fully-coherent radiation pattern
of a colour dipole is manifest. This is be demonstrated with Feynman rules by considering
the full contribution to the matrix-element ratio in Eq. (1.10)

∣M(0)
X+1∣2

∣M(0)
X ∣

2 =
⎡⎢⎢⎢⎢⎣

+ 2Re +
⎤⎥⎥⎥⎥⎦

÷ . (1.11)

Note that the numerator sums over all combinations, including the interference term in the
middle. There are standard textbook procedures for carrying out such calculations [29]. With
this in mind, we discuss this in the notation best suited to the Vincia shower, introduced in
[30], which will be used henceforth.

Universality ensures Eq. (1.11) will generalise to arbitrary 2 → 3 processes. We thus

assign the labels I and K to the two partons in the denominator process ∣M(0)
2 ∣. These are

the pre-branching partons, or ‘parents’, for which we reserve capital letters in their labelling.
In the Numerator M(0)

3 , there a three partons, for which we use lower-case labelling, i, j, k.
These are the post-branching or ‘daughter’ partons. Partons i and k are inherited from I
and K respectively, while j is reserved for the newly emitted parton.

With this notation the matrix-element ratio for gluon emission can be calculated as

∣M(0)
3 (pi, pj, pk)∣2

∣M(0)
2 (pI , pK)∣2

= ∣ gs ∑
λ=1,2

8

∑
a=1

ta((pk)
µ(ϵλa)µ

(pk)ν(pj)ν
− (pi)

µ(ϵλa)µ
(pi)ν(pj)ν

)∣
2

. (1.12)

Here, pi, pj, pk are the four-momenta of those respective partons, and ϵλa are the gluon
polarisation vectors. For intuitive purposes, we derived this result by implicitly assuming
parton-j was ‘soft’, meaning pj ≪ {pI , pK}, though the basic result will hold in general. We
assume unpolarised gluons, thus averaging over the states, and introduce the following useful
notation.
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We write the Lorentz-invariant inner-product between two four-vectors: pµ1 , p
µ
2 , as s12 =

2pµ1p2µ. This produces the following useful relation

m2
IK = (pµI + p

µ
K)2 = sIK +m2

I +m2
K = sij + sjk + sik +m2

i +m2
j +m2

k. (1.13)

We can use this notation in Eq. (1.12) to carry out the average over the initial states and
sum over the final states. This to leads to the following central result

∣M(0)
3 (pi, pj, pk)∣2

∣M(0)
2 (pI , pK)∣2

= g2sCijk[
2sik
sijsjk

− 2m2
I

s2ij
− 2m2

K

s2jk
] massless→ g2sCijk[

2sik
sijsjk

], (1.14)

where Cijk is a normalisation constant containing the colour-Casimirs and other factors.
Particularly in the massless case, this function is referred to as the ‘soft-eikonal’ radiation
function. Although generally difficult to prove [20], the soft-eikonal function is universal to
all QCD processes involving the ratio between matrix elements. In the context of the Vincia
parton-shower, the class of radiation functions to which the soft-eikonal term belongs are
collectively known as ‘antenna functions’.

In the convention of [26, 28] the antenna-functions of concern to this work are written as

a0(sij, sjk, sik) =
g2sCijk√

λ(sIK ,m2
I ,m

2
K)
a0(sij, sjk, sik)

= g2sCijk√
λ(sIK ,m2

I ,m
2
K)
[ 2sik
sijsjk

− 2m2
I

s2ij
− 2m2

K

s2jk
+ subleading terms], (1.15)

which is normalised by the Källén function λ(sIK ,m2
I ,m

2
K) = s2IK + m4

I + m4
K − 2sIKm2

I −
2sIKm2

K − 2m2
Im

2
K . The function a0 in the square-brackets is the ‘colour-coupling stripped’

antenna-function, containing only the masses and invariants. In general there will be other
subleading terms in the antenna function, but the soft-eikonal will be the dominant. To see
this we can introduce a frame dependant, but useful representation of the invariants

sij = 2EiEj(1 − cos θij) sjk = 2EjEk(1 − cos θjk). (1.16)

These terms will separately go to zero in the ‘collinear’ limit, where the angle of parton j
is zero with respect to either i or k. Similarly both terms will go to zero simultaneously
in the ‘soft’ limit, where the energy of parton j is zero. The soft and collinear scenarios
both correspond to divergences of the antenna function, representing the singular regions of
phase space where the probability of emission is enhanced. The denominator of Eq. (1.14)
thus contains a double singularity in the soft limit, and this soft-eikonal term thus meets our
criteria for a dominant radiation function. The subleading terms will also each contribute a
single additional divergence, making them subdominant. An advantage of the dipole-antenna
functions is that they manifestly describe both the soft and collinear limits. For example, the
early and prominent DGLAP formalism leverages the collinear limits of individual partons
only, limiting it to 1 → 2 processes. This neglects the soft-eikonal structure of soft 2 → 3
emission from colour dipole, which must instead be reinstated a-posteriori [31–33].

We have thus derived our dominant and universal radiation function. We will not discuss
the available methods for improving such antenna functions, as the soft-eikonal term will
suffice in this work. From this, we can now construct a simple shower algorithm from the
above components.
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2 A Simple Parton-Shower Algorithm

Having introduced the theoretical structure of the parton shower algorithm, we devote this
section to a detailed description of the Vincia dipole-antenna shower. This is intended to
clarify elements of the algorithm which are not explicitly described in the literature. This is
necessary for reproducibility, and to highlight all aspects of algorithm which may be suscep-
tible to numerical instability, which will be relevant in section 3.2.

We will not describe all elements of the algorithm in full, but each of the important
components will be present. Any additional details should thus be accessible in the official
documentation, and transparent given the context provided within this section. We empha-
sise that we will only consider q → qg and g → gg vertices, while g → qq and all QED effects
will be omitted. We present the algorithm in the context of a Z0-decay, implying an initial
center-of-mass energy of m2

Z = 91.1882 GeV2.

2.1 The Evolution Equation

Our first task is to re-write the Sudakov factor, Eq. (1.10) in a more approachable form.
To do this, we choose the scales Q2

i and Q2
j . Vincia belongs to a class of showers which

order their emissions with respect to the transverse momenta p⊥ of the radiative corrections.
Such p⊥-ordered showers start from the hardest (large p⊥) emission and produce progressively
softer (small p⊥) emissions. Vincia uses the Ariadne definition [12] of transverse momentum,
given by the shower invariants

p2⊥ =
sijsjk
sIK

⇒ x⊥ =
p2⊥
sIK
= yijyjk (2.1)

where x⊥ is the convenient dimensionless equivalent, using yij = sij/sIK and yjk = sjk/sIK .
The transverse-momentum squared p2⊥ becomes the ‘evolution variable’, and we make the

replacement Q2 → p2⊥. The Sudakov factor can then be expressed as

∆IK→ijk(p2⊥1, p2⊥2) = exp( −AIK→ijk(p2⊥1, p2⊥2))

= exp( − ∫
p2⊥2

p2⊥1

dΦijk
3

dΦIK
2

a0IK→ijk(sij, sjk, sIK)). (2.2)

This expression represents the probability that a state ∣IK⟩ at scale p2⊥1 will transition to
a state ∣ijk⟩ at scale p2⊥2. Vincia samples randomly from this distribution by setting ∆ =
R ∼ U(0, 1), and solving Eq. (2.2) for p2⊥2. Assuming the starting scale p2⊥1 is known, this
procedure gives the following equation to be solved.

R = exp [ −AIK→ijk(p2⊥1, p2⊥2)] (2.3)

However, the integral in the exponent is typically too cumbersome to work with directly.
This can be overcome by introducing a trial antenna-function, which is an overestimate to
the real antenna function,

a0trial ≥ a0IK→ijk. (2.4)

We can then use a Monte-Carlo accept-reject procedure to recover the correct distribution,
the details of which we defer to section 2.3. The simplest and canonical [34] choice for this
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trial function is the most singular term of the soft-eikonal antenna-function,

a0trial(sij, sjk, sIK) =
2s2IK
sijsjk

. (2.5)

The other component needed for Eq. (2.2) is the phase-space ratio dΦijk
3 /dΦIK

2 which
can be derived [3] from the ratio between phase-space factors dΦijk

3 and dΦIK
2 for three and

two parton interactions respectively. Stating the result in terms of the Källén function [9]
produces

dΦijk
3

dΦIK
2

= 1

16π2

dsijdsjk√
λ(sIK ,m2

I ,m
2
K)

dϕ

2π
. (2.6)

This expression is simplified by assuming unpolarised partons, allowing dϕ/2π to be integrated
away. Eq. (2.2) may now be written with this phase-space ratio and the trial antenna-
function,

AIK→ijk(p2⊥1, p2⊥2) = ∫
p2⊥2

p2⊥1

dΦijk
3

dΦIK
2

4πCαs(p2⊥)√
λ(sIK ,m2

I ,m
2
K)
a0trial(sIK , sij, sjk)

= f
2
λ

2π
C ∫

p2⊥2

p2⊥1
αs(p2⊥)

dsijdsjk
sijsjk

, (2.7)

where the p2⊥ scale dependence of αs necessitates that it stay in the integrand for now. We
have also ‘dressed’ the stripped-antenna function a0trial with the appropriate colour-coupling
factors using Eq. (1.15). Finally, we introduced the Källén function for convenience,

fλ =
sIK√

λ(sIK ,m2
I ,m

2
K)

massless→ 1. (2.8)

We would now like to change variables in order to integrate over p2⊥ instead of sij, sjk. We
do this with dimensionless quantities for convenience by introducing a second phase-space
variable,

y = 1

2
ln (sjk

sij
), (2.9)

which we interpret as a pseudorapidity to accompany x⊥. With the transformation of variables
sij = sIKe−y

√
x⊥ and sjk = sIKey

√
x⊥, we can re-express Eq. (2.7) in the simplified form,

AIK→ijk(x⊥1, x⊥2) = fλ
C
2π ∫

x⊥2

x⊥1
∫

y+(x⊥)

y−(x⊥)
αs(x⊥) d lnx⊥ dy, (2.10)

where y+(x⊥), y−(x⊥) are the x⊥-dependant rapidity bounds. The x⊥ dependence of αs
complicates the integral, but for now we can take a constant value of αs and recover the
physical value with a veto similar to the physical-rapidity veto introduced in section 2.3. We
then impose a running coupling, described in the next section.

With this αs, our choice of variables imply flat contours in the lnx⊥-y phase space, since
the above integrand is now constant for a0trial. We can use this description to visualise the
phase-space evolution with “Lund-diagrams”, depicted in Fig. 2. [35].

The phase-space planes for each dipole in the Lund-plane are referred to as ‘leaves’, with
The rapidity interval in Eq. (2.10) given by the leaf width of the specific dipole being evolved.
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Figure 2: Lund-plane visualisation of the antenna-function phase-space, with constant con-
tours in lnx⊥-y variables. Left: Coloured pyramid structures depict the accessible phase-space
planes at various stages in the evolution of massless partons. The largest ‘back-plane’ is the
initial phase-space of the Born-level dipole with invariant sIK . The black horizontal line
is the value of x⊥ at which the first emission from this dipole occurs at. Below this scale
there are now two dipoles, with invariant mass sjk and sij, to the left and right of the dark
overlap region respectively. The vertical dashed lines are the midpoint rapidity values of each
dipole, with the back-plane centered on y = 0. Right: Similar to left but now with one of
the quarks being massive. The dipole midpoints become asymptotic phase-space boundaries,
again depicted by vertical dashed lines. Arbitrary evolution windows are also introduced,
representing the variation in nf , which will be discussed in section 2.2.

The exact interval of the n-th dipole, y
(n)
± , is made more manageable with an overestimate

y
(n)
± ,

y
(n)
± = ±

1

2
ln [1 +

√
1 − 4x⊥n

1 −
√
1 − 4x⊥n

], y
(n)
± = ∓ ln

√
x⊥n ⇒ ∫

y+(x⊥)

y−(x⊥)
dy = lnx⊥n, (2.11)

where x⊥n = p2⊥/sn, with respect to the invariant of the dipole, sn. The overestimate approxi-
mates each leaf as a triangle, with the correct distribution recovered by veto. Consequently,
Eq. (2.10) becomes,

AIK→ijk(x⊥1, x⊥2) = fλαs
C
2π ∫

x⊥2

x⊥1

dx⊥
x⊥

ln(x⊥),

= fλαs
C
2π ∫

lnx⊥2

lnx⊥1
lnx⊥ d lnx⊥,

= fλαs
C
4π
( ln2 x⊥2 − ln2 x⊥1). (2.12)

Substituting into Eq. (2.3) yields the evolution equation for constant αs,

R = exp [ − fλαs
m2
IK

sIK

C
4π
( ln2 x⊥2 − ln2 x⊥1)],

⇒ x⊥2 = exp [ −
√

ln2 x⊥1 −
4π

αsfλC
sIK
m2
IK

lnR ]. (2.13)
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2.2 Running Coupling and Evolution Windows

We now describe how to include the scale dependence of αs. Our simple Vincia algorithm
will use one-loop running in the strong coupling. This is achieved by overestimating the
rapidity range with the ‘Lund rectangle’, which is itself an overestimate of the Lund triangle.
Fig. 2 demonstrates how a stack of Lund-rectangles are used to partition the phase-space
into so-called ‘evolution windows’. The baseline of each window is defined by used-selected
momentum values x⊥ = p2⊥/sCM, with respect to shower CM-scale. The rapidity range (window
width) within a window ∆y(x⊥) is then given by

y±(x⊥) = ±
1

2
ln(1 +

√
1 − 4x⊥

1 −
√
1 − 4x⊥

),

∆y(x⊥) = y+(x⊥) − y−(x⊥). (2.14)

The baselines of the evolution windows, x⊥, can be selected arbitrarily. However, an effi-
cient balance should be found which minimises the frequency of transition between windows,
while not excessively overestimating the rapidity ranges. The default choice in Vincia is to
use the quark-mass thresholds as the baselines, so that nf changes from window to window.
This is convenient, as a running coupling requires that we vary nf anyway.

The x⊥ dependence of the strong coupling is given by

αs(x⊥) =
1

b0 ln(x⊥/xΛ)
, where xΛ =

Λ2
nf

kRsIK
. (2.15)

kR is the renormalisation scale parameter which we set to unity in this work [36]. Λnf
is

the Landau pole, which depends on the number of quark flavours nf . We will discuss its
explicit form shortly. b0 is the one-loop running coefficient, written in terms of nf and the
colour-Casimirs CA, TR,

b0(nf) =
11CA − 4TRnf

12π
. (2.16)

The evolution windows allow for the removal of the explicit x⊥ dependence within the
rapidity interval. This enables integration over the logarithmic structure of αs(x⊥) instead,

AIK→ijk(x⊥1, x⊥2) =
IE
b0
∫

x⊥2

x⊥1

dx⊥
x⊥

1

ln(x⊥/xΛ)
,

= IE
b0
∫

lnx⊥2/xΛ

lnx⊥1/xΛ

d ln(x⊥/xΛ)
ln(x⊥/xΛ)

,

= IE
b0
( ln ln (x⊥2

xΛ
) − ln ln (x⊥1

xΛ
)). (2.17)

IE is the so-called ‘evolution coefficient’, which contains the following terms,

IE = fλ
C
2π

∆y(x⊥1). (2.18)

Eq. (2.17) can be rearranged to obtain an expression for x⊥ which now accounts for the
running of αs. We once again sample from the uniform distribution R ∼ U(0,1), by solving
R = exp(−A). This yields the evolution equation with running-αs,

x⊥2 = xΛ(
x⊥1
xΛ
)
R(b0/IE)

. (2.19)
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We emphasise that R is raised to the power of b0/IE.
The next step is to calculate Λnf

, needed in the calculation of xΛ. nf depends on the p2⊥-
scale, since the phase space can shrink to the point where some quark masses are inaccessible.
In our present context of Z0-decay we have nf = 5, since the starting scale m2

Z is less than the
top-quark scale m2

t . Λ5 can be determined from experimental measurements of the strong
coupling at the Z-mass scale;

αs(m2
Z) ≈ 0.1185 =

1

b0(5) ln(m2
Z/Λ2

5)
,

⇒ Λ5 ≈ 0.088 GeV. (2.20)

However, only Λ5 can be calculated this way, otherwise the transition from Λ5 → Λ4 and
Λ4 → Λ3 will be discontinuous. Continuity is restored by calculating Λ4 with respect to Λ5,
and so-on.

Λ4 = Λ5(
mb

Λ5

)
2/25

Λ3 = Λ4(
mc

Λ4

)
2/27

. (2.21)

Vincia treats up, down and strange quarks as massless, and most parton showers will termi-
nate at the hadronisation scale before they reach the two-flavour threshold and below. Hence
we typically only need Λ5, Λ4 and Λ3.

Finally, after generating the new x⊥2 value, we need to check its validity. If invalid, we
need to veto x⊥2, the procedure for which we defer to the following section. We may also
need to update the evolution window if x⊥2 is less than the current baseline x⊥1. If this is the
case we set x⊥2 → x′⊥1 = x⊥1, update nf and IE for the new window, and then generate a x′⊥2
using x′⊥1. We may also terminate the shower if p2⊥2 is less than a user defined cut-off scale
p2
⊥Had.

2.3 Generating New Partons

The previous sections describe the generation of a ‘branching scale’ for the emission of a new
parton in a 2 → 3 process. In this section, we describe how this parton is created, and how
this changes the event. We begin by building some intuition for how the shower evolves.

Our simplified discussion is centered on the initial process Z0 → qq, which creates the
initial quark-antiquark dipole. The phase space for this dipole is visualised with the primary
Lund-plane in Fig 2. We are only considering gluon emission, so there is only one possible
initial branching, qq → qgq, generalised as IK → ijk where j is the new gluon. We use the
evolution equation to generate a x⊥ scale for this emission, moving down the Lund-plane. This
produces two dipoles, qg and gg, both of which can produce a gluon. We therefore require a
method to select which dipole pair should produce an emission, which we call the ‘brancher’.
We also need to generalise this to an arbitrary number of dipoles as the multiplicity grows
for each subsequent emission.

Fig. 2 depicts the secondary phase-space leaves for these two dipoles. Since Vincia is
a transverse momentum ordered shower, we impose the requirement p2⊥2 < p2⊥1. This makes
the regions of the secondary leaves above lnx⊥1 inaccessible when generating x⊥2, which is
accounted for in the evolution equation.

At a given shower-wide scale p2⊥1 each of the n dipoles will have some probability to become
the brancher, which depends on the invariant sn unique to each dipole. We emphasise that we
select the brancher at the initial scale x⊥1 and then generate a scale x⊥2 at which the emission
occurs. The brancher probability is given by the evolution coefficient which we introduced
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in Eq. (2.18). Here we write the coefficient for the n-th dipole explicitly in terms of p2⊥1, the
evolution-window baseline for p2⊥1,

InE(p2⊥1, sn) = fnλ
Cn
2π

∆y(xn⊥1), where xn⊥1 =
p2⊥1
sn
. (2.22)

The Källén factor depends on the specific dipole invariants and the colour factor is given
by one of the three relevant processes;

qq → qgq ∶ C = 2CF , gg → ggg ∶ C = CA, qg → qgg ∶ C = 2CF +CA
2

. (2.23)

The latter is an average of the qq and gg dipole colour-factors, which also applies to the
gq → ggq case. This assumes the leading-colour limit, meaning more sophisticated treatments
can also be implemented [37].

Once all the dipoles at the scale p2⊥1 have been assigned an evolution coefficient, the
brancher is selected at random depending on the relative weights of each InE. This can be
implemented with a weighted linear-search algorithm or similar. The invariant of the brancher
becomes the parent invariant, sIK = sn.

The next step is to determine the invariants of the post-branching partons ijk, to which
we assign the two new dipoles created after the branching. They are calculated with the
inverse mapping;

sij = sIKe−y2
√
x⊥2 sjk, = sIKey2

√
x⊥2, sik = sIK − sij − sjk. (2.24)

Here, y2 is a trial rapidity generated uniform at random on the baseline interval ∆y(x⊥1);

y2 ∼ U(y−(x⊥1), y+(x⊥1). (2.25)

This trial rapidity needs to satisfy ∣y2∣ < y+(x⊥1). If it fails this check, a new brancher must
be selected with at scale x⊥2 → x′⊥1 and the process is repeated. Similarly, if the rapidity is
accepted, it subsequently needs to pass the relevant Monte-Carlo accept-reject step;

Paccept =
a0IK→ijk

a0trial
> R ∼ U(0,1). (2.26)

If Paccept is less than the uniform random number R, then we need to regenerate a new
brancher at the scale x⊥2 → x′⊥1. The general form of the antenna function a0IK→ijk is given
by

a0(sij, sjk, sik) =
2sik
sijsjk

− 2m2
I

s2ij
− 2m2

K

s2jk
+ 1

sIK + 4mImK

( sij
sjk
+ sjk
sij
). (2.27)

There are many variants of this antenna function used for different branchers [26, 28, 38].
If the phase-space point (x⊥2, y2) passes the above tests, it is accepted and the brancher

it belongs to is allowed to emit a gluon. In order to conserve momentum, we need to map
the momenta of partons IK onto the post-branching momenta of ijk. We will discuss such
kinematics maps in the following section.

The final step is to update the colour indices of the partons in order to maintain a notion
of colour connection. Vincia uses the same convention as Pythia [39] in the large-colour
approximation. To do this, we consider the initial Z0 → qq process. The quark is assigned
a colour-anticolour pair (101,0), as is the antiquark (0,101). The zero label indicates no
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colour/anticolour, while 101 labels an arbitrary colour that is shared between the two quarks.
The colours C matrices for the 2→ 3 branching are updated as follows.

CZ0qq =
⎡⎢⎢⎢⎢⎢⎣

Z0 ∶ 0 0
q ∶ 101 0
q ∶ 0 101

⎤⎥⎥⎥⎥⎥⎦
→ CZ0qgq =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Z0 ∶ 0 0
q ∶ 101 0
g ∶ 102 101
q ∶ 0 102

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.28)

Here, the gluon has colour 102-101, connecting it to the parent quarks. This naturally
generalises for further emissions, with the addition of a colour index for each new gluon.

2.4 The Recoil Scheme

The final piece of the algorithm is the kinematics map, sometimes called the recoil scheme.
This is the procedure by which we map the two-parton pre-branching momenta {pI , pK} to
the three-parton post-branching momenta {pi, pj, pk}. This updates the event by replacing
the two dipole parents with three daughter-partons, two of which are the recoiled parents
and one of which is the newly emitted third parton.

The simplest scenario we study is the initial Z0-decay into a massless quark-antiquark
dipole which proceeds to emit a gluon, Z0 → qq → qgq. In this ‘trivial’ case the parent
momenta pI , pK of the qq pair are given by

pqI = (
mZ

2
, 0, 0,

mZ

2
) (2.29)

pqK = (
mZ

2
, 0, 0, −mZ

2
), (2.30)

where Ecm =mZ is the center-of-mass energy of the initial hard process. These momenta are
given in the rest frame of the Z0-decay, which are typically defined as the ‘lab frame’. The
momenta are necessarily anti-parallel, directed along the z-axis by convention.

The Vincia algorithm constructs {pi, pj, pk} in the dipole-center-of-mass frame, then
performs the necessary boosts and rotations to return back to the lab frame. This is done by
constructing the momentum in an initial 1+ 2 dimensional frame, with no component in the
ŷ-direction, which we instead reconstruct later. This so-called center-of-mass-z (CMz) frame
orients parton i along the ẑ-axis. We then define the j and k partons with respect to i as
follows.

pµi = (Ei, 0, 0, pi),
pµj = (Ej, ∣pj ∣ sin θij, 0, ∣pj ∣ cos θij),
pµk = (Ek, ∣pk∣ sin θik, 0, ∣pk∣ cos θik). (2.31)

This construction places the partons in an x̂ẑ-plane, known as the ‘branching plane’. Using
on-shell conditions, the energies and momenta of the three partons can be determined,

Ei =
m2
IK −m2

jk +m2
i

2mIK

m→0= sIK − sjk
2
√
sIK

∣pi∣ =
√
E2
i −m2

i
m→0= Ei, (2.32)

Ej =
m2
IK −m2

ik +m2
j

2mIK

m→0= sIK − sik
2
√
sIK

∣pj ∣ =
√
E2
j −m2

j
m→0= Ej, (2.33)

Ek =
m2
IK −m2

ij +m2
k

2mIK

m→0= sIK − sij
2
√
sIK

∣pk∣ =
√
E2
k −m2

k

m→0= Ek, (2.34)
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with the fully massless case also given. Similarly the angles of partons j and k relative to i
are given by

θij = arccos
2EiEj +m2

i +m2
j −m2

jk

2∣pi∣∣pj ∣
m→0= arccos

2EiEj − sij
2EiEj

(2.35)

θik = arccos
2EiEk +m2

i +m2
k −m2

ik

2∣pi∣∣pk∣
m→0= arccos

2EiEj − sik
2EiEj

. (2.36)

The next step is to obtain the ŷ-values by performing two global rotations through Euler-
angles ψ and ϕ. The latter is a rotation out of the branching plane, around the ẑ-axis. Since
we assume unpolarised partons and thus no spin correlations, this angle can be selected
uniform at random;

ϕ ∼ U(0, 2π). (2.37)

The other angle ψ contains the remaining physics of the actual recoil process. It is global
rotation in the branching plane (around the ŷ-axis) which determines how much the momenta
{pi, pj, pk} are changed with respect to {pI , pK}. This rotation is modelled by the r-
parameter;

r = sjk
sij + sjk

. (2.38)

This is the canonical definition introduced in [9, 30], which enables smooth mapping between
the collinear limits. The collinear limits of traditional DGLAP based showers are recovered
for r = 0 (sjk → 0) and r = 1 (sjk → 0).

In the massless case, the ψ angle is defined in terms of invariants and the r-parameter
[21],

ρ =
√

1 + 4r(1 − r)yijyjk
yik

,

yIi = −
(1 − ρ)yik + 2ryijyjk

2(1 − yar)
,

ψ = 1 + 2yIi
1 − yrb

. (2.39)

The massless description is provided within [26]. The full center-of-mass momenta pµCM (with
y-component) can thus be obtained by applying a general 3D rotation Rϕψ to the CMz-frame
momenta from Eq. (2.31);

pµCM = Rϕψ p
µ
CMz. (2.40)

The final step is to transform the CM-frame momenta to the lab frame with an appropriate
Lorentz boost Λµν . Such a transformation matrix is defined by the frame spanned by pµI and
pµK (in the lab frame). Thus the complete kinematics map can be defined by the sequence of
transformations

pµlab = Λµν Rϕψ p
ν
CMz. (2.41)

With the post-branching four-momenta now defined, the event record can be updated
by replacing {pµI , p

µ
K} with {pµi , p

µ
j , p

µ
k}. This is typically done with direct replacements,

pµI → pµi and pµK → pµk followed by the insertion of pµj in-between.
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3 The Accuracy of the Vincia Antenna-Shower

Following our introduction and implementation of the Vincia antenna-shower, we now seek
to analyse its accuracy. To achieve this we first need a definition of the accuracy of a par-
ton shower. One can always make comparisons to experimental data, but this is a holistic
approach which tends to obscure specific systematic shortcomings we are interested in re-
solving. In the context of collider observables, one typically attempts to assess the order in
perturbation theory which the quantity is accurate to. While the parton shower generates an
observable at arbitrary order in αs, the antenna functions only capture the leading contribu-
tion at a given order. One therefore needs a description for this order-by-order accuracy. A
stated goal of the PanScales event generator [40] is to establish such a definition for parton
showers.

3.1 Logarithmic Accuracy

4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5− 0
] 2/mZ

1

2ln[4pT

6−

5−

4−
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2] 12
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T
22

ln
[p

T
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Dipole-Antenna Recoil - Parton-Shower/Matrix-Element Ratio

ln 4p2⊥1/m2
Z

ln
p
2 ⊥2/p

2 ⊥1

⟨R4⟩ Dipole-Antenna Recoil

Figure 3: Geometric-mean for the ratio ⟨R4⟩ between the analytically calculated four-parton
squared matrix-element of a 3 → 4 process and the parton-shower approximation to that
process. ⟨R4⟩ is represented as a 2D histogram of phase-space parameterised by the hardness
of the first and second gluons emitted with the default Vincia dipole-antenna kinematics,
using the Ariadne p⊥ = sijsjk/sIK definition. Ratios near unity indicate good agreement,
while variation from unity indicate inaccuracy. Phase space points were generated with the
RAMBO [50, 51] sampler, and matrix elements were calculated with MadGraph5 [41].
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To construct such a definition, recall that the universal singularity structure of QCD pro-
cesses is present at all orders of the parton-shower evolution, made manifest by the divergent
antenna functions. Integrating these singularities between two scales Q2

1 and Q2
2 results in

logarithms of ratios of those scales;

∫
Q2

2

Q2
1

[αs(
1

sijsjk
+ subleading)]

n

dsijdsjk = αns [ ln(
Q2

2

Q2
1

)
2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
double-log

+ subleading logarithms]. (3.1)

Here we integrate the n soft-eikonal terms associated with an arbitrary n-parton topology.
Additional subleading terms are also included, which contribute subleading logarithms of
lesser power than the leading ln2n double logarithm.

The ‘logarithmic accuracy’ of the shower thus refers to the number of these logarithms
which are correctly generated by the evolution. If all the terms are accounted for, the series
will converge on the true result for the given observable, agreeing with the matrix-element
calculation at the given O(αns ). Leading-logarithmic showers are typically capable of repro-
ducing the double-logarithmic term, along with the ln2n−1 term [42]. Most contemporary
parton-showers, including Vincia, may thus be considered leading-log (LL) since they are
capable of generating the logarithms associated with the soft-eikonal term. Whether these
showers are capable of next-to-leading logarithmic (NLL) accuracy is less clear.

The logarithmic accuracy of a shower is established by making comparisons to established
analytic results. The technique of ‘analytic resummation’ allows for the exact calculation of
a shower observable to a given logarithmic accuracy. The advantage of this method is its un-
ambiguous definition of accuracy, since the observable is resummed as a series of logarithms,
much like Eq. (3.1). The disadvantage is that a different resummation is required for each
shower observable [43]. The parton shower is evolved at the integral level, before logarithms
are generated, and is thus capable of describing a wide variety of different observables. This
comes at the cost of ambiguity about the accuracy of any given shower observable.

The logarithmic accuracy of Vincia may thus be assessed by isolating logarithmic con-
tributions and comparing them to the equivalent results from analytic resummation, The
studies of which are ongoing for Vincia. The contribution of this work to these studies will
be discussed in the following section.

Such studies have been performed with the PanScales and Alaric event generators [11,
44]. The results suggest that so-called ‘local’ recoil schemes are associated with subleading-
logarithmic inaccuracy. The Vincia kinematic map introduced in section 2.4 is an example
of a local recoil scheme, as recoil is distributed amongst just two of the partons in the event.
Likewise ‘global’ recoil schemes assign recoil to all partons in the event, and are therefore
less sensitive to these effects.

To understand these results, recall that the kinematics map is responsible for evolving
the accessible phase space as the shower progresses. Heuristically, this alters the domain
of integration, affecting the logarithmic structure even if the antenna functions contain the
necessary NLL singularities. Consequently, the chosen recoil scheme can affect the agreement
with resummed results.

In the soft-collinear regions of phase space, the dipole-antenna kinematics map will cor-
rectly distribute recoil amongst the dipole parents. Outside these regions however, no such
guarantee exists. As an example, consider a hard, wide-angle emission. The hardness of this
emission ensures that the recoil given to the parents will be significant, and the wide angle
implies this recoil will be largely transverse to the parents current momenta. Since there are
only two partons absorbing this recoil, the emission will non-trivially alter the topology of
the event, essentially ‘kicking’ the partons too hard. Global recoil schemes tend not to suffer
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from this problem, since the recoil is distributed amongst all partons in the event, and hence
each individual recoil is small.

We can heuristically derive the logarithmic inaccuracy associated with hard, wide-angle
emission. Consider integrating an antenna function which contains the leading eikonal term
as well as two subleading singular terms,

∫
x⊥2

x⊥1
dyijdyjk[

1

yijyjk
−yjk
yij
− yij
yjk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
subleading

] = ∫
x⊥2

x⊥1
∫

y+

y−
dx⊥dy[

1

x⊥
− 2 cosh(2y)]

=∆y ln x⊥2
x⊥1
+ 2(x⊥1 − x⊥2) sinh∆y, (3.2)

where we transform variables and define an arbitrary rapidity range ∆y. Strongly-ordered
emissions, x⊥2 ≪ x⊥1, are favoured by the soft singularity, which ensures that the logarithm
associated with the eikonal term will dominate the above result. For hard, wide-angle emis-
sions the momentum scales may still be ordered, but become commensurate; x⊥1 ∼ x⊥2. In
this scenario, both terms in the expression will now be small. Therefore hard, wide-angle
emissions are suppressed relative to soft-collinear radiation. Nevertheless, the logarithmic
term no longer dominates the expression, which is now sensitive to subleading effects. Since
the kinematics map is only designed to describe the phase space of the first term, the correct
rapidity range δy and dipole invariants are not guaranteed for the second, subleading term.

The inaccuracy associated with hard, wide-angle emission may be demonstrated numeri-
cally by plotting the ratio between the parton shower and the analytical matrix element for
such emissions. The geometric mean for this ratio may be plotted across a survey of phase
space, where deviation from unity indicates a shortcoming of the parton shower approxima-
tion. This is depicted in Fig. 3, where each bin is defined by the ratio

⟨R4⟩ = ⟨
∣M3∣2
∣M4∣2

a0sector(yij, yjk)⟩. (3.3)

The observed shape of the distribution is the consequence of the kinematic constraint 4p2⊥1 <
m2

CM. Importantly, if p2⊥2 ≪ p2⊥1, the emission is sufficiently soft to suppress any subleading
disagreement, since ⟨R4⟩ ∼ 1. As the emissions become harder, the expected departure
from unity is observed. The parton-shower approximation begins overestimating the matrix
element in the commensurate momenta region p2⊥2 ∼ p2⊥1.

3.2 Attempting a Numerical Study

We now attempt to establish a systematic framework for assessing logarithmic accuracy of
the Vincia dipole-antenna shower. However, this proves challenging, and is the necessary
subject of further investigation. Nevertheless, we outline the work that was undertaken, in
the hope that future studies may build upon these foundations.

In order to make comparisons with analytically resummed observables, the logarithmic
contributions to a parton-shower observable must be isolated, term-by-term. This is achieved
by suppressing all but the LL and NLL terms, using the limit αs → 0. In this limit the
evolution equation will produce ultra-soft radiation, resulting in large hierarchies between the
scales Q2

2 and Q2
1, causing the logarithms to diverge. Once the logarithms reach O(1/√αs),

Eq. (3.1) will take the form

1 +√αs
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

LL

+αs + αs
√
αs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NLL

+⋯. (3.4)
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For sufficiently small αs, the beyond-NLL contributions can be neglected, resulting in pure
NLL observables, which are then compared to analytically resummed results.

However, these small-αs studies pose several problems for existing parton shower algo-
rithms. A shower with a truly vanishing coupling constant will not evolve at all, since there
is no interaction between the fields. Instead, several small but non-vanishing values of αs
may be studied such that the true αs → 0 limit may be extrapolated.

This ultra-soft radiation poses an immediate complication regarding numerical stability.
Vincia uses double floating-point precision, implying sums between values which differ by
more than sixteen orders of magnitude are liable to instability. Take for example Eq. (2.39),
the ρ parameter in the kinematics map:

ρ =
√

1 + 4r(1 − r)yijyjk
yik

. (3.5)

The ratio inside the radical approaches zero in the small-αs limit, since yik ≫ {yij, yjk}. At
double-precision the computer will consequently consider this equation to be unity, which
sabotages the kinematics map.

Similar issues exist at all stages within the kinematics map. In some cases it was pos-
sible to stabilise equations with a careful reconstruction which avoided these instabilities.
However, the requisite rotation and boost to the lab frame in Eq. (2.41) typically remained
unstable. A possible solution is a Lorentz-invariant kinematics map. Such a recoil scheme
would not require unstable transformations between frames.

A Lorentz-invariant reformulation of the original dipole-antenna map [30] was investi-
gated, however the problem is notoriously challenging. For the purposes of the Vincia antenna
shower, the pre and post-branching momenta are related by

pI = xpi + rpj + zpk,
pK = (1 − x)pi + (1 − r)pj + (1 − z)pk, (3.6)

where r is the canonical parameter introduced in Eq. (2.38), and expressions for x, z are
presented in [26]. A frame-independent 3 → 2 ‘clustering map’ is straightforward to derive,
as there are less degrees of freedom in the pre-branching topology than the post-branching.
Inverting this map for the purposes of 2→ 3 branching is less straightforward, since the sys-
tem is underdetermined. It was brought to the authors attention that the work of Kosower
& Page [45] had concurrently achieved an inverse kinematics map. However, this map was
not immediately suitable for the Vincia algorithm, and given its considerable complexity, its
implementation was deemed beyond the time frame of this work.

Furthermore, following personal communication with C. Preuss 1 and S. Höche 2 it be-
came clear that some separate success had been made in stabilising the Vincia recoil map for
the purpose of these small-αs studies. This map was implemented in a prototype, quadruple-
precision version of Vincia with many modifications to stabilise the algorithm. The results
from these tests are yet to be published, but they indicate that the current form of the Vincia
dipole-antenna kinematics map will not be NLL accurate in all regions of phase space.

In light of these technical challenges, a complete numerical study of the logarithmic accu-
racy of Vincia was deemed unfeasible for the existing scope of this project. All the necessary
components needed to stabilise the algorithm have been presented in section 2, and it is
the authors intention that they are made clear for future studies. Nevertheless, we instead
proceed to directly study the performance of the dipole-antenna kinematics map for hard,
wide-angle emissions.

1(28th Nov 2022, 16th March 2023) Orcid.
2(28th Nov 2022) Orcid.
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4 Novel Jet-Antenna Kinematics

While a full assessment of the logarithmic accuracy of Vincia requires further development,
we still find some guiding principles in the previous section. The shortcomings associated
with dipole-antenna kinematics were made apparent within Fig. 3. In this section we propose
a simple extension of this recoil scheme, intended to improve upon these deficiencies. We
wish to reflect the advantages of global recoil schemes, while retaining the 2 → 3 formalism
which underpins the Vincia algorithm. The novel ‘jet-antenna’ kinematics map is introduced
herein as a proof of concept. We also explore avenues for extension and future developments
which were outside the scope of this work.

4.1 Motivating Jet Recoil

g1

q

g2

q

Figure 4: Four-parton topology depicting the emission of two gluons from a quark dipole,
including colour lines in the leading-colour approximation. Gluon g2 is explicitly the second
emission gluon, radiated from the g1q dipole. g2 is not emitted collinear to g1 or q.

Consider a simple four-parton topology as depicted in Fig. 4. We will impose ordering
such that p2⊥(g1) > p2⊥(g2), using the Ariadne momentum definition. g2 may be considered a
wide-angle emission for our purposes.

By default, Vincia would generate the emission of g2 with local recoil, distributing trans-
verse momentum to g1 and q only, leaving q unchanged. Global recoil schemes would instead
incorporate the quark, and consequently the transverse recoil on g1 and q will be diminished
accordingly. In the case of soft emission, this recoil will be negligible for both local and global
kinematics. In the case of hard emission however, the recoil will be significant and the final
topology would depend strongly the chosen recoil scheme.

Furthermore, dipole-antenna kinematics rely implicitly on the leading-colour approxima-
tion. In such a limit, the colour flow within the event is represented as a planar diagram, as in
Fig. 4, where colour lines do not intersect [46]. In a full-colour description of QCD however,
one would account for the coherent contribution from all radiators in the event [47, 48]. Such
a model would require a multipole description of QCD, a capability which remains elusive
for parton showers [49]. Nevertheless, since global recoil schemes incorporate all radiators
during the emission of a parton, they reflect the full-colour description to a greater extent
than local schemes do.

The advantage of the dipole-local description lies in the simple phase-space factorisation
which facilitates the simple factorisation of universal matrix-element ratios into the antenna
functions. Global recoil schemes are not a-priori compatible with such factorisation, making
it inadequate to simply swap the kinematics map for a global one. To achieve a ’global-esque’
dipole-antenna kinematics map, there are several desirable features;
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• The map should retain the IK → ijk structure of the existing kinematics map, as
described in section 2.4.

• However, the dipole parents I and K may consist of more than one parton. Such a
collection of partons may be referred to as a ‘jet’.

• These jets will thus participate in regular dipole-antenna recoil, and enter the final
state as the post-branching pseudo-particles i and k.

• A suitable method must be selected for how to collect partons into a jet, and how to
separate them once more after recoil.

Consider as an example, the combination of partons q and g1 into a jet (qg1). This would
remove the red colour-connection depicted in Fig. 4. The second emission gluon g2 can
then be radiated from the (qg1)-q dipole, allowing for q to participate in the recoil when it
otherwise would have spectated.

Such a removal of the colour line must be treated with care. A full-colour description of
the emission of g2 would incorporate all colour charges in the event, however we have now
explicitly removed one. We must thus consider the scenarios where this is acceptable. If all
the partons in the event are ‘well separated’ (not collinear) with respect to each other, then the
charge-anticharge endpoints of the colour line will be clearly distinguishable in the resulting
field coherence which produces g2. Furthermore, the combination of two or more of these
well separated partons into a jet will drastically alter the charge distribution. Conversely, if
the partons which form the jet are largely collinear, the colour-dipole endpoints will interfere
destructively, and won’t contribute to the emission of g2. Provided the emitted gluon is well
separated from such a jet, the overall charge configuration will remain approximately the
same.

We hence do not expect these jet recoils to outperform regular dipole-local kinematics
in all configurations. Studies must be performed to determine the cases where they are
advantageous. We begin with a description of the kinematics map itself, followed by some
preliminary numerical results which survey a number of phase-space variables.

4.2 The Jet-Antenna Kinematics Map

For now, let us restrict ourselves to the four-parton topology depicted in Fig. 4. We want
a recoil scheme which incorporates the spectator parton q. The simplest method to achieve
this is to sum the four momenta of the jet constituents:

pµjet = pµq + pµg1 , m2
jet = 2pµq pgµ = sqg1 . (4.1)

This necessarily introduces a mass to the jet, which implies a massive kinematics map should
be employed, even if all the constituent partons are massless. Due to its simplicity, this will
be the method used to construct jets in this work.

In the context of a shower algorithm, this jet can now be used to generate a new parton
with the regular dipole-antenna 2 → 3 kinematics map. The evolution equation would be
used to generate a phase space point for this emission, based on the (qg1)-q dipole. Dipole-
local recoil could then be applied to the jet as a whole, allowing for q to recoil when it
otherwise would have been neglected. We label the pre-branching jet momenta p̃µjet, and the
post-branching jet pµjet.

We then construct the Lorentz-transformation matrix which takes p̃µjet to p
µ
jet. This trans-

formation may then be applied to the jet constituent particles in the pre-branching state, p̃µq
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and p̃µg1 . Such a transformation maps those momenta onto the post-branching state, while
conserving momentum. We have thus incorporated the spectator parton into the recoil, while
still retaining the 2→ 3 kinematics map.

The same technique may be used for the inverse of the kinematics map, where a 3 → 2
‘clustering’ process. The jet is created and mapped with a the corresponding inverse Lorentz-
transformation.

4.3 Numerical Analysis

In this section we compared the performance of the novel jet-antenna recoil scheme with the
default dipole-antenna kinematics map. This analysis proceeded using the matrix-element
ratio ⟨R4⟩ introduced in Eq. (3.3). The RAMBO [50, 51] uniform phase-space sampler gen-
erated four-parton topologies from a mZ = 91.188 GeV process. These raw events contained
two quarks and two gluons. The following two ratios were calculated for comparison.

⟨Rdip
4 ⟩ = ⟨

∣Mdip
3 ∣2

∣M4∣2
adipsector(yij, yjk)⟩, ⟨Rjet

4 ⟩ = ⟨
∣Mjet

3 ∣2
∣M4∣2

ajetsector(yij, yjk)⟩ (4.2)

The labels ‘dip’, and ‘jet’ indicate the clustering was performed with dipole-antenna and jet-
antenna recoil schemes respectively. The MadGraph5 package [41] was used to calculate the
matrix elements. The four-parton matrix element was the baseline for comparison between
the two cases. The relevant antenna function was included to complete the parton-shower ap-
proximation to ∣M4∣2. Specifically, sector antenna-functions were used to reduce the number
of permutations under consideration [38].
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Figure 5: Left: ⟨Rdip
4 ⟩ across phase space parameterised by the hardness of g1 and the hardness

of g2 with respect to g1. Colour lines are not crossed in these samples, and both gluons must
be separated by at least one unit of rapidity. Right: ⟨Rjet

4 ⟩ for the same configuration as left.
White pixels were not filled, either due to kinematic constraints or rarity.
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For the dipole-antenna case, the gluon with the smallest Ariadne p2⊥ was clustered, which
is a requirement of the sector antenna functions. Quark-gluon antenna functions were used
for the qgg → qg and ggq → gq clusterings. For the jet-antenna case, the jet is treated as a
quark, since the internal colour line with the gluon is removed. Hence, quark-quark antenna
functions were used, which importantly do not contain gluon singular terms.

Finally, some restrictions were placed on the rapidities of the partons in the event. Using
the intuition developed in section 4.1, it was expected that jet kinematics would be highly
sensitive to the angular configuration of the partons in the event, and unsuitable for some
regions of phase space. Furthermore, the uniform sampling of phase space permitted many
pathological topologies which would be suppressed by an actual event generator. The follow-
ing two conditions were imposed such that the results were interpretable, while remaining
suitable as simple criteria for jet kinematics.

1. The rapidity differences ∆y12, ∆y23, ∆y34 between the four partons in the event, 1234 =
qggq, must all have the same sign. This ensures that colourlines are not ‘crossed’, such
that all clustered partons remained outside the opening angle of the jet.

2. The rapidity difference between the two gluons should be greater than unity, ∆y23 > 1.
This ensures that the gluons are well separated, and not collinear.

Additionally, there is an ambiguity in which jet to create of the two choices, qg and gq. For
this analysis, the jet was chosen to be the dipole with the smallest rapidity separation ∆y,
informed by the intuition that the most suitable jets will be formed from collinear colour-
partners.

The results from these studies are presented in Fig. 5, where both plots were subjected to
the two conditions above. The topologies which violated these conditions performed poorly,
as expected, and were thus removed to allow the study of those which were expected to
perform well. The requirement ∆y23 > 1 was found to be the smallest rapidity separation
which allowed for clear results, while not removing too many samples. The following features
are clear in the results.

• The dipole-antenna plot is largely the same as Fig. 3, however the above restrictions
exposed a large underestimated region between −3 < lnp2⊥2/p2⊥1 < −1. This region is not
present within the jet-antenna plot, which instead experienced a general improvement.
Below this region, the emissions were soft and thus jet recoil is unnecessary; ⟨Rjet

4 ⟩
experiences no improvement.

• Interestingly, ⟨Rdip
4 ⟩ was superior around lnp2⊥2/p2⊥1 = −1, counter to the intuition re-

garding commensurate momenta emissions developed in section 3.1. This structure was
not present in Fig. 3, when the two conditions above were absent. This suggests those
conditions are also beneficial for dipole-antenna kinematics.

• There is a significant underestimated region for large p2⊥1 in ⟨Rjet
4 ⟩. This was likely

caused by the absence of necessary finite (non-singular) terms in the antenna functions,
and not a result of the kinematics map.

The final point justifies some elaboration. Finite terms were removed from the antenna
functions during the initial shower operator construction (Eq. 1.8) to take advantage of
the pure singularity structure. Universal finite terms can sometimes be reinstated in antenna
functions by considering the spin contributions from massive boson decays [52]. Alternatively
matrix-element corrections can be performed to restore the finite terms excluded from the
antenna functions. We will discuss such corrections in the following section.
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Figure 6: Left: ⟨Rdip
4 ⟩ across phase space parameterised by the rapidity difference and the

hardness of g2 with respect to g1. ∆y is defined as the by the same partons which form ∆yjet
in Right. Colour lines are not crossed in these samples, and both gluons must be separated
by at least one unit of rapidity. Right: ⟨Rjet

4 ⟩ for the same configuration as left. ∆yjet is
defined as the smallest quark-gluon rapidity separation in the event.

As jet recoils were expected to be dependent on rapidity configurations, it was also
prudent to consider these results with respect to the rapidity difference ∆yjet of the two
partons forming the jet. These results are presented in Fig. 6, where the horizontal axis was
replaced due to the approximate independence of the results on p2⊥1. The following features
are clear.

• Broadly speaking, the size of the central underestimated region was reduced when jet
kinematics were employed. It remains unclear if the remaining under-counting region is
due to finite terms missing from the antenna function, or some other feature obscured
in Fig. 5.

• ⟨Rjet
4 ⟩ approached unity around lnp2⊥2/p2⊥1 ∼ 1.5 for small rapidity separations but wors-

ened as ∆y increased. Jet recoils performed better at intermediate rapidity separations.
However if the aforementioned underestimated region for small ∆yjet is due to to missing
finite terms, then this conclusion is marred.

4.4 Consensus and Future Extensions

As expected, we found that some regions of phase space are improved by jet-antenna
kinematics, while others are not. However, we must be careful in making broad conclusions
about the success or failure of these studies, since they are highly dependent on the configu-
rations chosen. It is likely that not all the scenarios which benefit from jet kinematics have
been analysed.

Ideally one would develop a simple set of ‘jet criteria’ which would classify emissions as
suitable or unsuitable for jet-antenna kinematics. Enforcing that emissions be colour-ordered
and that ∆y23 > 1 is one such simple set of criteria, however this also appeared to benefit
dipole-antenna kinematics to some extent. Therefore, there are several desirable extensions
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to the studies presented above which were beyond the scope of this project, and are necessary
to establish such criteria. The following questions remain to be investigated.

• What other jet recoil parameters can be varied to further test the behaviour? Jet-
antenna kinematics are highly dependant on the topology of the event, and not all
configurations were studied explicitly. A machine-learning survey of the full parameter
space could be employed to optimise ⟨Rjet

4 ⟩ across phase space. This may provide a
more empirical set of jet-recoil criteria than those found by manual observation.

• Can matrix-element corrections be employed to introduce any finite-terms potentially
required for the jet antenna-functions? Such terms may improve the results presented
in the above studies, removing the underestimated regions. However, if such terms are
required it could complicate the implementation of the jet-antenna functions to the
extent the jet recoil method becomes undesirable from an efficiency standpoint.

• Is the formation of the jet from the simple addition of four-momenta sufficient, and what
other descriptions are suitable? The simple summation presents an a-priori momentum
conserving map, with the benefit that the resulting pseudo-mass is simple to interpret.
Clustering maps such as 2 → 1 or n → 1 could also be used to generate jets with
rapidity and p2⊥ accounted for. However, this would present a significant computational
overhead, and the results from this work do not indicate how or if this would lead to
improvement.

Furthermore, for real parton shower applications, jet-antenna kinematics would need to
be generalised beyond the simple four-parton events used in this initial study. Such generali-
sations dramatically increase the number of possible jet combinations. Five-parton topologies
may contain two jets, or one jet containing three partons, and so forth. New studies would
need to be performed to test these cases.

In order to consider jet kinematics in the context of arbitrary parton showers, a defini-
tive jet criterion would need to be established. Once in hand however, there is little reason
to suspect jet kinematics would not generalise to larger multiplicities. Parton showers will
tend to form jets (in the traditional sense) due to the enhancement associated with collinear
radiation. These jets are physical structures consisting of collimated partons, which may be
measured experimentally using event-shape observables such as thrust or jet-broadening. In
these scenarios jet kinematics treat each traditional jet as a single pseudo-parton, with a
single net colour. The jet is allowed to recoil as a single body, distributing the total recoil
amongst the constituent partons.

Furthermore, the approximate scale invariance of QCD implies that jet-antenna kinemat-
ics should be valid at all orders of the parton-shower evolution. This includes within the
substructure of traditional jets, as well as for wide angle emission between jets. In these
situations the recoil may be negligible within the whole event, but significant in the local
vicinity of the dipole, and thus should be accounted for.

Finally there is the ultimate goal of achieving NLL accuracy for the Vincia shower. As dis-
cussed in section 3.1 there are NLL effects associated with hard, wide-angle emissions, which
jet-antenna kinematics were theorised to improve. It is clear that the initial implementa-
tion still exhibits the subleading effects associated with commensurate momenta emissions
x⊥1 ∼ x⊥2. In fact the improvement observed for jet recoils appears around lnp2⊥2/p2⊥1 ∼ −2.
Therefore, we cannot conclude that jet-antenna kinematics will correspond to an improve-
ment in the logarithmic accuracy of Vincia.

In order to suggest such an improvement, the logarithmic accuracy of Vincia would need
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to be ascertained using the methods outlined in section 3.2. If the technical challenges sur-
rounding these studies can be overcome, the dipole and jet-antenna kinematics maps may be
compared with analytically resummed results. If jet recoil corresponds to an improvement in
the logarithmic accuracy of shower results, then they can potentially contribute to the NLL-
compatibility of Vincia. It is not expected that jet-antenna kinematics can solely achieve
NLL-accuracy.

5 Conclusions

In this thesis we presented a complete construction of a basic parton-shower event genera-
tor for timelike gluon emission using the Vincia dipole-antenna formalism. The generation
of logarithmic structures from the antenna-functions was used to emphasise the empirical
shortcomings observed for hard, wide-angle emissions. A novel jet-antenna kinematics map
was subsequently developed to address this problem by reducing the excessive transverse
recoil assigned to the dipole parents. This was intended to mimic the capability of global
recoil schemes which do not tend to suffer from these deficiencies. This jet recoil scheme was
not intended to improve all events, and was expected to fail in regions where jets could not
be clearly defined. Numerical studies were conducted to establish the criteria with which jet
recoils should be utilised. Improvements were observed in several regions of the phase space,
but not necessarily where expected. Furthermore, it was challenging to isolate these regions of
improvement using the typical phase space variables, making it difficult to establish jet-recoil
criteria. Nevertheless, it is clear that jet-antenna kinematics do offer an improvement in many
instances, and should readily generalise to more complicated multiplicities provided criteria
for their use can be established. Several avenues for further investigation were highlighted,
with the hope that ongoing investigations regarding the logarithmic accuracy of Vincia can
be incorporated and used to assess the performance of the jet-antenna kinematics map more
directly.
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“Herwig 7.2 release note”, EPJ 80, 1912.06509 (2020).

[8] E. Bothmann, G. S. Chahal, S. Höche, J. Krause, F. Krauss, S. Kuttimalai, S. Lieb-
schner, D. Napoletano, M. Schönherr, H. Schulz, S. Schumann, and F. Siegert, “Event
generation with sherpa 2.2”, SciPost Physics 7, 1905.09127 (2019).

[9] W. T. Giele, D. A. Kosower, and P. Z. Skands, “A simple shower and matching algo-
rithm”, Physical Review D 78, 0707.3652 (2008).

[10] P. Skands, N. Fischer, S. Prestel, and M. Ritzmann, The vincia antenna shower for
hadron colliders, 2016.
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