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Abstract

Monte Carlo event generators are a key tool in understanding the physics that occurs in particle
colliders. As our detector precision increases, so to does the need for accurate and comprehensive
event generators. In this thesis we implement a process for performing a QED shower off of a decaying
hadron in VINCIA [1]. We then validate our results through comparisons to PHOTOS [2, 3, 4, 5, 6],
which is the current standard for QED radiation in hadron decays as well as to the main PYTHIA [7]
shower. Finally, we outline the limitations of these comparisons as well as extensions we would like
to make in the future.
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1 Introduction

Particle colliders, such as the Large Hadron Collider (LHC) at CERN, are the way in which we experi-
mentally test our theories and drive theory forward when trying to understand fundamental particles and
the interactions between them. Unfortunately, in collider experiments only the final states of the collision
are observable. These final states consist of the products of the more interesting, less understood process
which occur before they reach our detectors. Experimentally we are only able to detect final state parti-
cles, which consists of mostly leptons and light hadrons, and work backwards reconstructing the process
which created them. This reconstruction process is complicated and it can often be difficult to distinguish
between a decay mode of interest, such as J/Ψ → π+π−, and unrelated particles that appear like the
decay of interest, such as a pair of pions which may look like a J/Ψ decay but where actually created
by separate processes. One of the key tools for understanding these intermediate processes are Monte
Carlo event generators (MCEG), such as PYTHIA [7], HERWIG [8] and SHERPA [9]. These tools allow
us to model intermediate states based on our theoretical understanding of the process we are interested
in. MCEG’s are used to make sense of experimental results, such as using simulated to data to train
classification algorithms to distinguish a process of interest from the background, which may look like
the process of interest.

As we move towards higher precision experiments and collect more data the effect of QED radia-
tion in understanding these processes becomes increasingly important [2]. When a particle radiates its
momentum changes, keeping track of how these momenta change is crucial in being able to accurately
reconstruct these events. The LHCb experiment is an example of where QED radiation of off hadron
decays is relevant. The LHCb experiment is located at CERN and is specifically designed to investigate
b-physics, the physics of hadrons involving the bottom (beauty) quark, as wells as other heavy hadron
interactions such as those involving a charm quark. The goal of the LHCb experiment is to investigate
CP violation in these process as well as other beyond the standard model (BSM) physics. An example
of a process where this radiation is of interest at the LHCb experiment is the decay B0 → J/ΨK∗0 with
J/Ψ → µ+µ− and K∗0 → K−π+. As well as being able to distinguish this decay mode from the prompt
decay B0 → K∗0µ+µ− with K∗0 → K−π+.

For our purposes we are concerned with the VINCIA [1] treatment of radiation in hadron decays as
well as how it compares to the current standard PHOTOS [2, 3, 4, 5, 6]. PHOTOS is an all purpose
QED radiation generator for QED radiation in hadron decays, meaning that it can interface with a
generic MCEG to add radiation after the fact. We will be accessing PHOTOS through an interface with
EVTGEN [10], which is a MCEG which is specifically designed to model the decay of hadrons.

There are many reasons we want to implement this internally in VINCIA rather than using the already
existing external software. Firstly, an internal implementation is simpler and easier to use as it is avoids all
of the technical complications that come with interfacing to external software. An internal implementation
is also has benefits in being easier to maintain and build upon as we are not reliant on others to fix bugs
or add additional features; We have not been able to verify an update to PHOTOS since the publication
of Ref. [6] in 2015. There are also benefits in terms of internal code performing better due to it being
able to be run in parallel. Finally, we would like to model the radiation as a parton shower, so that we
can interleave the QED radiation with the QCD shower that already exists in VINCIA.

2 Theory

2.1 Hadron Decay

We will briefly discuss hadron decay and what hadrons are before we begin in earnest. A hadron is a
bound state of quarks, for our purposes we mostly look at mesons which contain a quark and an anti-
quark. Due to their nature as non-perturbative bound states we do not have a simple way to describe
them using Feynman diagrams unlike elementary particles. The way we capture the non-perturbative
structure of hadrons is with form factors. Form factors are calculated from experimental data, since they
can not be calculated perturbatively. They describe the structure of the hadron, the way in which it
differs from a point particle. The solution to this non-perturbative structure when drawing Feynman
diagrams is to describe the hadronic legs in the Feynman diagram as the four-momentum of the hadron,
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multiplied by the hadron decay constant associated with that hadron [11]. The hadron decay constant is
a special case of a form factor.

The hadrons we are interested exist as unstable resonance states. This means that are generated with
a mass, not equal to their nominal mass but on a Breit-Wigner distribution as laid out in Ref. [7]. This
distribution is based on the particle width, which is the reciprocal of the average lifetime.

2.2 QED Radiation

2.2.1 Probability of Emission

We are looking at the effects of QED radiation, the emission of a photon from an electrically charged
particle. We shall follow the treatment in Ref. [12] and start with the simplest case, a charged scalar
particle which experiences some change in its momentum, such as exposure to a magnetic field, and then
emits a single photon. We will represent the Born level process with M0(p, p

′).

Figure 2.1: The Feynman diagram which illustrates the process associated with the matrix element
M0(p, p

′)

We can now look at our first order real emission which has two contributing Feynman diagrams, one
where the photon is emitted in the initial state and one where it is emitted in the final state.

(a) The Feynman diagram which illustrates the
process associated with the matrix element
M1(p, p

′)

(b) The Feynman diagram which illustrates the
process associated with the matrix element
M2(p, p

′)

Figure 2.2: The Feynman diagrams which illustrates the process associated with the a single photon
emission.

With a clear picture of what is going on we can now use these Feynman diagrams to build their corre-
sponding matrix elements.

M1 = −eM0(p− k, p′)
i

(p− k)2 −m2
(p+ p− k)µε∗µ(k) (2.2.1)
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M2 = eM0(p, p
′ + k)

i

(p′ + k)2 −m2
(p′ + p′ + k)µε∗µ(k). (2.2.2)

We can simplify these matrix elements by choosing to use the Lorenz Gauge, kµεµ = 0 and operating in
the soft limit where |k| ≪ |p0|. This gives us our matrix elements for a soft photon,

M1 = −eM0(p, p
′)
p · ε∗

p · k
(2.2.3)

M2 = eM0(p, p
′)
p′ · ε∗

p′ · k
. (2.2.4)

We can now calculate the total cross section of this process in the usual way by squaring their sum and
integrating over the phase space of the photon to get our total cross section for this process,

dσ(p → p′ + k; ε) = dσ(p → p′)

∫
d3k

(2π)32k
e2| p

′ · ε
p′ · k

− p · ε
p · k

|2. (2.2.5)

We call dΦk the phase space element of the photon and use this to calculate the cross section of the
process per phase space element

dσ(p → p′ + k; ε)

dσ(p → p′)dΦk
= e2

(
2p · p′

(p′ · k)(p · k)
− m2

(p · k)2
− m2

(p′ · k)2

)
. (2.2.6)

We can already see something that looks like a problem, as |k| → 0, the emitted photon becomes soft, this
probability per phase space element will diverge. If we consider the emitting particle to be massless for
the sake of simplicity and integrate the right hand size of eq. (2.2.6) over the phase space of the emitted
photon we get ∫

d3k

(2π)32k

2(p · p′)
(p′ · k)(p · k)

=
1

4π2

∫ kmax

0

dk

k

∫ 1

0

d cos(θk)

∫ 2π

0

dϕ

2π

1− cos(θpp′)

(1− cos(θkp))(1− cos(θkp′))
.

(2.2.7)

Here we see that we still have the soft divergence we identified in eq. (2.2.5), but we seem to have
introduced another divergence as our photon becomes collinear to the emitting particle, θkp or θkp′ goes
to zero. We can integrate over ϕ so that only our divergences remain giving us

Probability of emission =
e2

4π

∫ kmax

0

dk

k

∫ 1

cos(θpp′ )

d cos(θk)

1− cos(θk)
. (2.2.8)

We need to regulate these divergences and so we introduce kmin and θmin, a minimum photon energy
and a minimum angle of emission. We can physically motivate these decisions by considering kmin to be
a photon with a wavelength the size of the universe. In many treatments kmin is instead regulated by
a fictitious photon mass, θmin is naturally regulated by the mass of the emitting particle as we will see
in eq. (2.4.11). Once we have introduced these quantities we can compute our integral to obtain what is
known as the Sudakov double logarithm

e2

4π
ln

(
kmax

kmin

)
ln

(
1− cos(θpp′)

1− cos(θmin)

)
. (2.2.9)

While we have regulated the divergence in that we no longer have an infinite probability, our “probability”
can still be greater than one. We can make sense of this by thinking about what we have actually
calculated, we have not calculated the probability that we emit one photon but instead we have calculated
the average number of photons for the process at first order. More specifically we have calculated the
average number of resolvable photons i.e. photons with k ≥ kmin and θk ≥ θmin.
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2.2.2 Resolving the Divergence

We still need to deal with the divergence that occurs as kmin, θmin → 0. We have so far neglected the
interference between our Born level process and the single virtual photon emission (one loop). The single
virtual photon emission and the Born level process are degenerate final states and in quantum mechanics
we must sum over degenerate final states as we did to get eq. (2.2.5).

(a) The Feynman diagram for the no emission pro-
cess

(b) The Feynman diagram for the one virtual emis-
sion process.

Figure 2.3: The Feynman diagrams for the no emission process (a) and the one virtual emission process
(b). We can see that the final states are the same in both.

To aid in this we will change the notation we used earlier for writing these matrix elements

M0 → M
(0)
0 (2.2.10)

M1 +M2 → M
(0)
1 . (2.2.11)

Here the subscript denotes the number of real emission while the superscript denotes the number of
virtual emissions. We can now calculate our full next-to-leading order cross section as

σNLO =

∫
|M (0)

0 +M
(1)
0 |2 dΦ0 +

∫
|M (0)

1 |2 dΦ1 +O(α2) (2.2.12)

σNLO =

∫
|M (0)

0 |2 dΦn +

∫
2Re[M

(0)∗
0 M

(1)
0 ] dΦ0 +

∫
|M (0)

1 |2 dΦ1 +O(α2). (2.2.13)

Figure 2.4: The next-to-leading order cross section for a single emission. Here each matrix element has
been represented with its corresponding Feynman diagram

What we find is that the interference term (
∫
2Re[M

(0)∗
0 M

(1)
0 ]dΦ0) contains Sudakov double logarithm we

found in eq. (2.2.9) for the single real emission term (
∫
|M (0)

1 |2 dΦ1), however it has the opposite sign and
so they cancel each other out and our cross section is no longer divergent. This cancelling of divergences
is true to all orders by the Kinoshita-Lee-Nauenberg (KLN) theorem [13]. An explicit demonstration of
this cancellation can be found in Ref. [14] for e+e− → µ+µ−.
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2.2.3 All Order Corrections

Now that we are confident that we have removed the divergences from our problem at all orders we
want to be able to calculate the effects of photon emission to an arbitrary order. We to use the Lorentz
invariant form we get in eq. (2.2.6) which we can relate to eq. (2.2.8) in the same way as Larkoski [15].

dsaγ
saγ

dsbγ
sbγ

∝ dk

k

dθ

θaγ
+

dk

k

dθ

θbγ
(2.2.14)

where sij is the the dot product of the four momenta of particles i and j i.e. sij = 2pµi pjµ, with a and b
being a pair of charged particles which can radiate. If we chose to express our Lorentz invariant quantity
sij in a frame dependent we we get sij = 2EiEj(1− cos(θ)), which we can see goes to zero as the angle
between the two particles goes to zero or as either energy becomes zero. In other words it contains both
our soft and collinear singularities. Now we can build a recurrence relationship between the differential
cross section with n particles and no virtual emissions and the same state with an additional photon as
in Ref. [16].

dσ
(0)
n+1 = g2NAB→abγ(

dsaγ
saγ

dsbγ
sbγ

+ less singular terms)dσ(0)
n . (2.2.15)

Here NAB→abγ is a constant and g2 is the coupling squared. This factorisation of a state with one
additional real emission functions is done in the same way that we expressed our matrix elements in
eq. (2.2.1) and eq. (2.2.2). When we express this not as a differential cross section but instead as a total
cross section we obtain

σ
(0)
n+m = αm(ln2m + ln2m−1 + · · ·+ ln+R). (2.2.16)

Where lnλ represents a generic function with transcendentality λ, these functions represent the singular
structures. Transcendentality is effectively the number of logarithms that have been multiplied together
to create the term, we use a generic measure of transcendentality as occasionally other functions such
as dilogarithms can appear. Meanwhile R is a rational function with transcendentality 0 which is a
finite term with no singularity [16]. With this expression the simplest approximation we can make is to
ignore all terms but the one with the largest transcendentality. This is known as the double logarithm
approximation (DLA) and is the approximation we will be using here for illustration purposes. When
using the DLA we can expect to accurately capture the ln2n and ln2n−1 terms. Since we know that our
divergences must cancel to all orders by the aforementioned KLN theorem [13] we know that our virtual
emission differntial cross section must be of the same form as eq. (2.2.15) but with the opposite sign.

dσ(1)
n = −g2NAB→abγdσ

(0)
n

∫
dsaγ
saγ

dsbγ
sbγ

+ less singular terms. (2.2.17)

We now have our two recurrence relations which we can use to perform our corrections to all orders,
with our relation corresponding to real emissions acting as a creation operator adding a state with an
additional photon and the relation corresponding to the virtual interference acting as an annihilation
operator, removing a state which did not emit a photon. This preserves unitarity, so that as we create
a state with n + 1 particles we destroy a state with n particles, keeping our total number of states the
same.

2.3 Parton Showers

The parton shower is the way in which we “dress up” a hard process with radiation. The minimum
requirements for a parton shower are a radiation function, a phase space factorisation and an ordering
variable [7]. We have flexibility in the choices we make for these and the choices we make will be informed
by what we want our shower to do best and what trade offs we consider acceptable.

Since we will be working in the DLA we can describe our shower using an iterative Markov Chain, so
that each step in our shower only depends on the step before it. We can do this for an arbitrary hard
process, F , and an observable O we can write our differential cross section in terms of S which we call
our evolution operator [16]

dσF

dO

∣∣∣
S
=

∫
dΦF |M (0)

F |2S(ΦF ,O). (2.3.1)
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In defining our evolution operator we need to first define what is known as the Sudakov Factor. The
Sudakov Factor is a cumulative distribution function which describes the probability that their is no
radiation between two evolution scales. It is way in which we sum over all of our degenerate states [15]
and has the general form [16]

∆(Φn, QE1 , QE2) = exp

[
−
∑
r

∫ QE2

QE1

dΦr
n+1

dΦn
Sr(Φn+1)

]
. (2.3.2)

In the Sudakov Factor we sum over all pairs of charged particles which can radiate, r, between our generic
evolution scale QE1 and QE2 with a phase space factorisation between the current phase space and the

phase space of the state after it has radiated,
dΦr

n+1

dΦn
and our radiation function Sr. We will cover the

specifics of the Sudakov Factor in the next section however it is worth mentioning it in the context of a
familiar process, the decay of a radioactive atom. Where our radiation function is the decay constant,
our evolution scales are some initial and final times and the phase space factorisation being replaced with
dt and so we can define the “Sudakov Factor” for nuclear decay by

exp[−
∫ t2

t1

C dt]. (2.3.3)

With our Sudakov Factor defined we can now define our evolution operator [16],

S(ΦF , QE1
, QE2

,O) = ∆(ΦF , QE1
, QE2

))δ(O −O(ΦF ))

+
∑
r

∫ QE1

QE2

dΦr
F+1

dΦF
Sr(ΦF+1)∆(ΦF , QE1 , QF+1))S(ΦF+1, QF+1, QE2 ,O).

(2.3.4)

Here the first line describes all of the terms which do not radiate as we move from our initial evolution
scale QE2 to our final evolution scale QE1. The second line describes the all of the events that did evolve,
it also contains the showering operator, which means we have a proper Markov chain.

We have mentioned the evolution scale and ordering variable without elaborating on what that means.
The ordering variable defines what one step in our Markov chain is and is the variable which we evolve
our shower in. In the case of nuclear decay we mentioned previously the ordering variable is time. The
showers we discuss here are ordered in transverse momentum, p⊥. The ordering variable acts as a measure
of “softness” or “collinearity” [7] and so the transverse momentum is a good choice since an emission at
a low p⊥ can be either soft or collinear or some combination of the two.

While we have been talking about emitting radiation from final state particles (FSR), we can also
describe radiation from initial state particles (ISR). ISR occurs before the hard process of interest and
works by resolving our shower backwards in our evolution variable, we find two particles in the initial
state and look to see if they are the result of a showering [7].

Finally we should discuss the manner in which we try to restore some accuracy that we lose in making
approximations such as the DLA or the antenna functions we use in VINCIA. The soft and collinear
singularities are universal and are present in all process, however there are less singular and finite terms
which we would like to capture where possible. We do this by matching our approximate matrix elements
with exact matrix elements that we have calculate to some fixed order. We can do this with programs
such as POWHEG [17] and MC@NLO [18]. One of the largest limitations of this however it that we are
mostly confined to next-to-leading order corrections.

2.4 The VINCIA Shower

2.4.1 The Dipole Antenna Formalism

The Dipole antenna formalism is based on the idea that particles radiate coherently as dipoles not as
individual particles and that we can not determine which particle actually emits the radiation [19]. Since
we are looking at QED radiation we can sum over all of these dipoles and capture the full multipole
structure of the radiation, though we still only consider a dipole for the purposes of the kinematics [20].
This means we can capture both the collinear and soft singularities inherently in our showering kernel. We
can contrast this with the original Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting kernels
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used in the main PYTHIA shower, which capture quite well the collinear region of phase space but require
additional work to accurately describe all of phase space [7]. Another benefit of using this formalism is
that is allows us to interleave the QED shower with the QCD shower, unlike a formalism such as the
YFS exponentiation method [21] which does not have this interleaving effect [16]. Additionally, the YFS
formalism does not natively account for terms which contain only the collinear singularity.

Before we continue on it is worth laying out the notation to be used as described in Ref. [22].

sij = 2pi · pj
m2

ij = (pi + pj)
2 = sij +m2

i +m2
j .

(2.4.1)

The sij we have defined here is the same s that appears eq. (2.2.14). We will also use lower case subscripts
to denote final-state partons and capital subscripts to denote initial-state partons. For example, mI would
be an initial-state mass and mi would be a post-branching mass.

2.4.2 Antenna Functions

Antenna functions are define using matrix element factorisation, which we have seen previously such as
in eq. (2.2.15). We define our antenna function explicitly as in Ref. [23]

aj,IK(sij , sjk,m
2
i ,m

2
j ,m

2
k) =

|M3(i, j, k)|2

|M2(I,K)|2
. (2.4.2)

The antenna function describes the ratio between the matrix element of our initial two particle state,
|M2(I,K)|2, and our final state where we have radiated a photon, j, |M3(i, j, k)|2. The antenna function
is our splitting kernel, or in the more general language we used in the previous section, our radiation
function, Sr, and can be thought of as the probability density for our branching.

In the same way that we have ISR and FSR, we also have multiple different antenna functions. These
are defined by whether the particles which make up the antenna appear in the initial or final state. If
both appear in the final state we have a final-final antenna (FF), if both appear in the initial state we
have an initial-initial antenna (II) and if one is in the initial and one is in the final we have an initial-final
antenna (IF). For our purposes we do not need to concern ourselves with the II antenna as our initial
states only contain one particle, the decaying hadron. We can relate these antenna functions together by
crossing symmetry, if we have a particle in the final state we can move it to the initial state by changing
the sign of its momentum and using that to calculate the matrix element. In the case of our decaying
hadron we are not technically using the IF antenna but instead the resonance-final antenna (RF). RF
processes involve the decay of some resonance state, such as a top quark or our decaying hadron, which
form an antenna with one of its decay products [24]. RF antennae and IF antenna, however have the
same form but we differentiate them as they require different implementations in VINCIA.

Figure 2.5: The different types of antenna function dipoles II, IF and FF.
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2.4.3 Phase Space Factorisation

We have seen in the definition of the Sudakov Factor, eq. (2.3.2) and in section 2.3 that we need a phase
space factorisation, a way of relating our pre-branching and post-branching phase space. Since we are
using an antenna formalism we will use the antenna phase space factorisation as defined in Ref. [22],

Φant
ik =

dΦ3

dΦ2
=

1

16π2
λ

−1
2 (m2

IK ,m2
I ,m

2
K)dsijdsjk

dϕ

2π

× δ(m2
ijk − sik − sij − sjk −m2

i −m2
j −m2

k)Θ(Gijk > 0)

(2.4.3)

where λ is the Källén function, λ(m2
IK ,m2

I ,m
2
K) = m4

IK +m4
I +m4

K − 2m2
IKm2

I − 2m2
Im

2
K − 2m2

IKm2
K ,

and Gijk is the three-body Gram determinant Gijk = sijsjksik − s2ijm
2
k − s2ikm

2
j − s2jkm

2
i + 4m2

im
2
jm

2
k.

The Gram determinant defines whether or not the branching phase space is valid. With this phase space
factorisation we can build out the systematic way that we will assign momenta post branching, which
is done differently by different showers. In the VINCIA QED and QCD showers both use the same
kinematic mapping [25] which is based on massive generalisation of the Kosower [26] mapping.

2.4.4 Sector Antenna Showers

It is worth mentioning briefly that VINCIA is technically a sector antenna shower. This means that
while we capture the full multipole structure of the radiation, we only consider one dipole to be radiating
instead of tracking all possible histories where each pair may have radiated the photon. The specifics of
which are more relevant for the functioning of QCD showers, due to ambiguous decay processes such as
gg → ggg, and are detailed in Ref. [23]. They serve to reduce the number of possible shower histories
and make performing matrix element corrections less computationally difficult.

2.4.5 The Fully Coherent Shower

VINCIA’s fully coherent multipole shower is described in Ref. [22, 20]. When describing the fully coherent
multipole shower we first consider the matrix element factorisation in the soft limit

|Mn+1({p}, pj)|2 = −8πα

n∑
i,k

σiQiσkQk
sik

sijsjk
|Mn({p})|2. (2.4.4)

Where Qi is the charge of particle i, {p} is the set of charged particles with momentum, pj is the
momentum of the emitted photon and σi is ±1 depending on whether i is an initial (σx = −1) or final
(σx = 1) state particle. When we consider the quasicollinear limit, simply the collinear limit for a massive
emitter, we get the following factorisation

|Mn+1(p1, . . . , pi, . . . , pn, pj)|2 = 4παQ2
i

2

sij
P (z,m2

i , sij)|Mn({p})|2. (2.4.5)

Where P (z,m2
i , sij) is the general Altarelli-Parisi (DGLAP) splitting kernel

P (z,m2
i , sij) =

1 + (1− z)2

z
− 2m2

i

sij
(2.4.6)

for fermions and

P (z,m2
i , sij) = 2

z

1− z
− 2m2

i

sij
+

4

3

(
1− z

z
+ z(1− z)

)
(2.4.7)

for the W± boson, where z is the energy fraction z = Ei/Ei+j . For our purposes we treat all spin-one
hadrons as if they are W± bosons. We can now build our full emission kernels for both FF and IF/RF
radiation.
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aFF (sij , sjk, sik) = 4
sik

sijsjk
− 4

m2
i

s2ij
− 4

m2
k

s2jk
+

δi is spin-half
2

sIK

sjk
sij

+ δk is spin-half
2

sIK

sij
sjk

δi is spin-one
8

3

1

sij

(
sjk

sIK − sjk
+

sjk(sIK − sjk)

s2IK

)
+

δk is spin-one
8

3

1

sjk

(
sij

sIK − sij
+

sij(sIK − sij)

s2IK

)
(2.4.8)

aIF (sij , sjk, sik) = 4
sik

sijsjk
− 4

m2
i

s2ij
− 4

m2
k

s2jk
+

δi is spin-half
2

sIK

sjk
sij

+ δk is spin-half
2

sIK

sij
sjk

δi is spin-one
8

3

1

sij

(
sjk

sIK + sjk
+

sjk
sIK

+
s2jk
s2IK

)
+

δk is spin-one
8

3

1

sjk

(
sij

sik + skj
+

sij
sIK + sjk

−
s2ij

(sIK + sjk)2

)
(2.4.9)

The first term in each of this antenna functions is called the eikonal term. The eikonal term contains
both the soft and collinear singularities explicitly if we use the frame dependent form of
sij = 2EiEj(1 − cos(θij). The remaining singular terms in each antenna are dependent of the spin of
the radiating particle and only contain a collinear singularity and so we call them the collinear terms.
The Kronecker-delta functions check the spin of the particle and add them to the antenna if appropriate.
We can see in the eikonal and the mass suppression terms, how the emitter mass regulates the collinear
singularity [27], if we go to a frame dependent definition of sij .

4
sik

sijsjk
− 4

m2
i

s2ij
− 4

m2
k

s2jk
→

2EiEk(1− cos(θik)

EiE2
jEk(1− cos(θij)(1− cos(θjk)

− m2
i

E2
i Ej2(1− cos(θij)2

− m2
k

E2
kEj2(1− cos(θjk)2

.

(2.4.10)

We can perform some algebra to get

1

E2
j

(
2

(1− cos(θij))(1− cos(θjk))
− m2

i

E2
i (1− cos(θij)2

− m2
k

E2
k(1− cos(θjk)2

)
. (2.4.11)

We can see that as the θij or θik gets small the negative terms will get larger faster than the positive

term with the exact cut off point where the total becomes negative determined by m2

E2 . This creates a
“dead cone” below a certain angle where we expect to see no radiation. With our FF and IF antennae
defined we can build our full emission antenna,

aQED
emit ({p}, pj) = −

∑
{i,k}

σiQiσkQkaemit(sij , sjk, sik) (2.4.12)

Here we sum over all pairs of particles which can emit a photon, capturing the full multipole structure.
We can now use this to write our matrix element factorisation for the whole shower and enforce the
requirement that it be a sector shower

|Mn+1({p}, pj)|2 = aQED
emit (({p}, pj))4πα

∑
{ik}

Θ((p2⊥)ik)|Mn({p})|2. (2.4.13)

Here we turn our shower into a sector shower through the use of the Heaviside function, Θ. This selects
the pair of charged particles, i and k, which have the smallest transverse momentum to the emitted
photon and chooses them to be the emitting dipole for kinematic purposes.
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2.4.6 The Pairing Algorithm

As an alternative to the fully coherent shower, VINCIA also has a shower which uses a dipole approx-
imation for the radiation. This will be interesting to compare to the multipole shower for decays with
many charged decay products. It has following matrix element factorisation.

|Mn+1({p}, pj)|2 ≈ 4πα

n∑
[i,k]

Q2
[i,k]aEmit(sik, sij , sjk)|Mn({p}ik)|2. (2.4.14)

Instead of summing over all possible pairs of particles which could emit it uses the Hungarian Algorithm
[28, 29] to find the maximally screened pairs of charges. If it is not possible to pair up every particle
then the coherent shower is run on the remaining unpaired particles. While this does not capture the full
multipole, it is computationally faster than the fully coherent shower despite the Hungarian algorithm
having a time complexity of O(n3). Meaning that the time taken scales with the cube of the number of
charged particles we need to pair up.

Figure 2.6: A diagram of two electron positron pairs travelling in opposite directions. The blue lines
represent a positive antenna while the orange line represents a negative antenna. We can see that the
antennas between the far away e+e− pairs mostly cancel each other out while the antennas in the nearby
pairs dominate [20].

2.4.7 Radiation Below the Hadronisation Scale

In the context of a QED shower for an entire event which starts with a proton-proton collision, we need
to change the way we implement radiation due to the confinement effects in QCD when we are dealing
with energies below the hadronisation scale. The hadronisation scale is the energy scale at which point
coloured partons start forming hadrons and so is naturally of interest to us. The formation of hadrons
in PYTHIA and VINCIA is described by the Lund String model [30]. Below the hadronisation scale
VINCIA will only shower off of leptons and since the leptons are not necessarily charge conserving will
use the colour neutral but electrically charged strings for the purposes of the kinematics. The shower will
not account for the electrical charge in the string when deciding whether or not to radiate and does not
include any charged hadrons that are present in either the kinematics or the showering [20].

2.5 PHOTOS

For our purposes we are interested in how the QED radiation off of hadron decays is handled in PHOTOS,
more specifically PHOTOS++ the C++ implementation of PHOTOS. PHOTOS is not a parton shower
but is instead a general purpose after-burner which is intended to interface to a generic Monte Carlo
Event Generator and after the decay has occurred generate QED radiation. Based on Ref. [5, 2] it has
an exponentiated mode which uses the YFS formalism [21]. While we have been unable to verify the
exact implementation used in PHOTOS both HERWIG [31] and SHERPA [32] use this formalism as well
and so we will assume that the PHOTOS treatment is functionally similar. This formalism works by
expressing the soft divergence using a single coefficient so that as we go to all orders we can exponentiate
it.
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M0
0 = M0

0

M1
0 = αBM0

0 +M1
0

M2
0 =

(αB)2

2!
M0

0 + αBM1
0 +M0

0

MnV
0 =

nV∑
r=0

MnV −r
0

(αB)r

r!

(2.5.1)

Where MnV
0 , is a matrix element with nV virtual photons and no real emissions, α is the power of the

coupling, MnV
0 is the matrix element with the divergence subtracted out and B contains the divergence

as the energy of the photon goes to 0. This generalises to the case with both real and virtual emissions
and is described in full in Ref. [21] and succinctly in Ref. [32].

With an exponentiated form containing our divergence we can write the “crude” cross section, which
is the cross section based on approximations.

Γcrude =

∞∑
nγ=0

1

nγ !

∫
dΓ0dΦke

Y (ω)

nγ∏
i=1

S̃q(ki)Θ(ki,Ω). (2.5.2)

Here dΓ0 is the differential cross section of the born level process, Φk is the phase space of the photons,
Y (ω) is the YFS form factor which contains all of the exponentiated divergences, ω is the cut-off for the
region defined by Ω, Θ(ki,Ω) partitions the phase space into two regions with the region of phase space
defined by Ω containing the divergence in the YFS form factor and then the rest of the phase space which
is where we can emit photons, Θ(ki,Ω) = 1 if ki /∈ Ω otherwise it’s 0 and S̃q(ki) is the soft divergence
term for a photon with momentum ki which has the form

S̃(k) =
α

4π2

∑
i<j

σiQiσjQj

(
pi

pi · k
− pj

pj · k

)
. (2.5.3)

This sums over all of the dipoles which could emit a photon, with σ and Q having the same definitions as
in eq. (2.4.4). We can evaluate the integral in eq. (2.5.2), making the approximation that the YFS form
factor Y ≈ −n̄, the average number of photons we get the final form of the crude cross section

Γcrude = Γ0

∞∑
nγ

[
1

nγ !
e−n̄n̄nγ

]
. (2.5.4)

We can see we now defined our crude cross section as the born level cross section multiplied by a Poissonian
distribution with the average number of photon emissions n̄. This is used to generate a number of
photons, which are then assigned momenta using eq. (2.5.3). Each of PHOTOS, HERWIG and SHERPA
then reassign momentum based on their own kinematic remapping schemes. Worth noting is that this
formalism does not natively capture the collinear singularity we get in VINCIA from the spin of the
particle. These are present but are treated as higher order corrections, in a similar way to the way we
consider matrix element corrections in VINCIA.

3 Implementation Overview

Before we go on to make comparisons between VINCIA, PYTHIA and EVTGEN/PHOTOS we should
look at how hadron decays were handled before and how we are handling them now. Particle decays in
VINCIA/PYTHIA are handled by a decay function. This function handles which decay mode is used,
the kinematics of the decay products and importantly for our case it calls the showerQED function. This
showerQED function is called exclusively from this decay function and it takes the decay products and
builds a system for showering which is then treated like any other system of charged particles. The system
is passed to the prepare method in VinciaQED and then after it has been prepared and built we perform
the shower from some p2⊥ scale down to p2⊥min. In section 2.4.7 we discussed how the VINCIA shower
has two separate treatments for showering, one for above the hadronisation scale and one for below the
hadronisation scale which can only shower off of leptons. While it then seems correct to treat hadron
decays using the below the hadronisation scale treatment, and in principle we would like to, lots of the
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mechanics of the below hadronisation scale treatment concern strings and the fragmentation process and
aren’t relevant to many decay processes. This below the hadronisation scale regime was hard coded to
only shower off of leptons, since VINCIA was not originally intended to handle hadron decay. We have
worked around this restriction by identifying if a system of particles is a hadron decay and then treating
it with the full QED multipole shower. This allows us to shower off of hadron decays, without impacting
the below the hadronisation scale treatment.

In addition to this more minor changes were made to the surrounding code. The first of which is that
the check for whether or not to call the showerQED function was moved from the decay function and
instead placed inside the showerQED function itself. This means that each implementation of showerQED
can have its own definition of whether or not the function call is valid. Previously the function was only
called if the decay was both fully leptonic and had a multiplicity of two. Secondly, the antenna functions
that were previously used for the W-boson, now check whether the particle has a SpinType of three and
not whether or not it is a W. This allows for the spin of any vector particle to be used in the antenna
function; An antenna function was added for spin three halves particles, though it is currently the same
as that of the spin half particles and is something to look to implement fully in the future. Finally,
switches were made for toggling on and off the individual spin components of the QED shower for both
the process level and the hadron decay case.

4 Fully Leptonic Decays

Fully leptonic decays are the simplest decays we can look at and so are the ideal place to start. If we are
getting disagreements with the main PYTHIA shower or the results from EVTGEN/PHOTOS then that
is a sign that we are doing something wrong. In addition to this comparing e+e− final states to µ+µ−

final states is the simplest and clearest way to see if we are handling mass effects as we would expect.
We will begin with looking at the VINCIA results by themselves before comparing them first to the main
PYTHIA shower and the EVTGEN/PHOTOS results.

4.1 VINCIA Results

We begin by comparing the results of the VINCIA shower for J/Ψ → e+e− and J/Ψ → µ+µ−. The
observables of interest are the total amount of energy radiated by the decay, the opening angle of each
radiated photon to the most energetic negatively charged final state particle, which we will refer to as the
angular distribution of photons from here and the angular distribution where each entry in the histogram
is weighted by the energy of the photon which we will refer to as the energy distribution. The angular
distribution and energy distribution are normalised per photon unlike the amount of energy radiated
which are per event.
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Figure 4.1: The graph of the total amount of energy radiated by the J/Ψ → e+e− (purple) and the
J/Ψ → µ+µ− (blue).

We can see that the shape of the distribution for both the J/Ψ → e+e− and J/Ψ → µ+µ− process is the
same, but the decay to muons emits less radiation at each point. This is the expected result as the muon
is the same as the electron except for its significantly higher mass. Another place we would expect to see
the effect of this mass difference is in the angular distribution of photons.

(a) Angular Distribution of Photons. (b) Energy Distribution of Photons.

Figure 4.2: The graph of the angular distribution of photons for J/Ψ → e+e− (purple) and the J/Ψ →
µ+µ− (blue) on the top and the energy weighted angular distribution of photons on the bottom.

We can see that the angular distribution in the electron case sees a large enhancement at small angles
(small angle to the electron) and at large angles (small angle to the positron), which we would expect
as the mass of the electron is small and so we see the enhancement caused by the collinear singularity.
Similarly we can see that in the muon decay case we see an enhancement at small and large angles, how-
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ever at the smallest and largest angles we see a sharp drop off. We expect to see this as the larger muon
mass regulates the collinear singularity and prevents emissions in this region. We can use eq. (2.4.11) to
calculate the angle of the dead cone where we expect to see no radiation. We take the energies for each
emitting particle to be half the J/Ψ mass and get the respective critical angles.

J/Ψ → e+e− = 0.83◦

J/Ψ → µ+µ− = 10.85◦

We can not see the effect on the electron state as the angle is less than our bin width, however we see
that we are in fact emitting below the angle for the muons. The angle does roughly correspond to where
we start seeing the drop off in distribution occur. This is most likely caused by the fact that our angular
distribution is calculated based on the angle to the final state particle and not to the particle when the
emission occurs. The recoil of the particles for emissions past the first is likely the cause for the emission
we see inside the dead cone region. We can see that weighting the angular distribution by the photon
energy, seen in fig. 4.2b, changes the shape of the J/Ψ → e+e− decay as well as for the decay to a pair of
muons. We see the peak at small angles grow larger for the e+e− and correspondingly the trough through
the wider angles get lower, indicating that small angle radiation is harder than wide angle radiation. This
is again consistent with what we would expect, a hard collinear photon and a soft wide angle photon
can both have the same p⊥. Perhaps more interestingly is that we see the same effect in the muon case,
where we see that despite seeing proportionally less photons in the region they carry a disproportionate
amount of energy

Finally for our final comparison within VINCIA we can look at the effects of turning off the spin terms
in the antenna functions.

(a) Comparison of energy radiated for J/Ψ →
e+e−.

(b) Comparison of energy radiated for J/Ψ →
µ+µ−.

Figure 4.3: The graphs of the total amount of energy radiated VINCIA with the full antenna function
(blue) and VINCIA with only the eikonal term (purple).

We can see that turning off the antenna function has the expected effect of decreasing the amount that
we radiate in all but the softest regions, where we see proportionally more radiation from the eikonal
only graph. We also see that the graph with the eikonal term only has a smaller tail. The difference
between the tail of the full kernel and the eikonal term only is greater for the decay to a pair of electrons
than to the pair of muons, this is also expected as we can see that the in eq. (2.4.8) and eq. (2.4.9) the
eikonal term is depressed by the mass of the emitting particles but won’t affect the size of the spin terms.
More interestingly is the effect that the spin term, which contains only the collinear singularity, has on
the angular distribution of photons and the energy distribution of radiation.
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(a) Comparison of angular distribution of photons
for J/Ψ → e+e−.

(b) Comparison of energy distribution of photons
for J/Ψ → e+e−.

Figure 4.4: The graphs of angular distributions for J/Ψ → e+e− VINCIA with the full antenna function
(blue) and VINCIA with only the eikonal term (purple).

We see a very small difference in the angular distribution of the radiated photons between the full kernel
and eikonal component (fig. 4.4), with the full kernel seeing a stronger enhancement in the collinear region
than the eikonal term which makes sense since the extra spin term contains only a collinear singularity.
A larger difference is seen in the distribution of the energy (fig. 4.4b), where we see both a stronger
enhancement in the collinear regions and correspondingly proportionally less at wide angles.

(a) Comparison of angular distribution of photons
for J/Ψ → µ+µ−.

(b) Comparison of energy distribution of photons
for J/Ψ → µ+µ−.

Figure 4.5: The graphs of angular distributions for J/Ψ → µ+µ− VINCIA with the full antenna function
(blue) and VINCIA with only the eikonal term (purple).

In the same way that we see a stronger enhancement in the collinear region in fig. 4.4a, we also see a
small decrease in the suppression of the collinear region for the angular distribution in the full kernel as
opposed to the eikonal term only. In a similar way to fig. 4.4b we see a greater proportion of energy
radiated in the collinear region and less at wide angles.
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4.2 Comparison to PYTHIA

When we compare our observables of interest between the PYTHIA main shower and the VINCIA shower
for J/Ψ → e+e− we get the following results.

(a) Comparison of energy radiated between
PYTHIA and VINCIA.

(b) Comparison of the angular distribution of pho-
tons between PYTHIA and VINCIA.

Figure 4.6: The graphs of the angular distribution of photons for J/Ψ → e+e− between PYTHIA (blue)
and VINCIA (purple).

From this we can clearly see that for the J/Ψ → e+e− case VINCIA and PYTHIA agree on the amount
of energy that is radiated, however PYTHIA emits a significantly higher proportion of its photons at the
smallest angle to a charged particle, while VINCIA emits proportionally more at larger angles. When
we weight the distribution by the energy of the photons as in fig.4.7 we see that this continues, with
PYTHIA radiating more of its energy in the collinear region with VINCIA, radiating more at wide
angles. Interestingly they seem to radiate a similar amount of energy in the first and last bin, the most
collinear region. This is likely due to the fact that PYTHIA uses the DGLAP splitting kernels which
describe most accurately the collinear limit. This means that the most collinear region will naturally
be more radiative for PYTHIA than VINCIA, however they agree at the smallest angles as the DGLAP
splitting will be the term term driving our splitting as we saw in our factorisation in the quasi-collinear
limit in eq. (2.4.5).
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Figure 4.7: The graph of the angular distribution of energy radiated for J/Ψ → e+e− by VINCIA (purple)
and PYTHIA (blue).

We can do the same for J/Ψ → µ+µ− (fig. 4.8) gives us a very good agreement for events which emit less
than 1.5 GeV of energy in the form of radiation. This discrepancy in the greater than 1.5 GeV emitted
region of the graph is most likely caused by a lack of events in the region. We believe this as we have
seen in the process of obtaining these results that the level of agreement in this region increases with
the number of events. The effect on the angular distribution is the same as in the case on the electron
positron pair, with PYTHIA radiating proportionally more at the peak enhancement from collinearity
and proportionally less at wide angles. We can also see in the ratio pane, that in the most collinear region
the PYTHIA shower experiences a higher suppression than VINCIA.

(a) Comparison of energy radiated between
PYTHIA and VINCIA.

(b) Comparison of the angular distribution of pho-
tons between PYTHIA and VINCIA.

Figure 4.8: The graphs of the angular distribution of photons for J/Ψ → µ+µ− between PYTHIA (blue)
and VINCIA (purple).
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When we weight this angular distribution by the photon energy (fig. 4.9) we can see that the discrepancy
between the showers in the wide angle region is accentuated and the difference at the most collinear
enhanced region is depressed. We also see that despite PYTHIA emitting proportionally less photons in
the most collinear region, it radiates a higher proportion of its energy in this region.

Figure 4.9: The graph of the angular distribution of energy radiated for J/Ψ → µ+µ− by VINCIA
(purple) and PYTHIA (blue).

4.3 Comparison to PHOTOS

Comparisons to PHOTOS are what we are most concerned with as it is the current standard for QED
radiation in hadron decays. We are doing comparisons to PHOTOS through EVTGEN, this imposes
restrictions on the sorts of data we can get and so we will only be looking at comparisons to the total
amount of energy radiated.
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Figure 4.10: Comparison of the total amount of energy radiated between VINCIA (purple) and PHOTOS
(blue) for J/Ψ → e+e−.

We can see that we have a very good agreement between the radiation produced by PHOTOS and the
radiation produced by VINCIA. In the sections of the graph where we have the most statistics PHOTOS
radiated around 10% less than VINCIA at all points, except for the peak at zero. The minor difference
we see between VINCIA and PHOTOS in the ratio pane in fig.4.10, is indicative of a significant absolute
difference in the number of events since the bin value is orders of magnitude larger than any other. This
difference seems to be caused by either a larger number of events that don’t radiate or a significant
number of very soft photons emitted which we look at more in section 5.1.
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Figure 4.11: Comparison of the total amount of energy radiated between VINCIA (purple) and PHOTOS
(blue) for J/Ψ → µ+µ−.

When looking at J/Ψ → µ+µ− (fig.4.11) we don’t see the same trend we did in figure 4.10. Instead of
VINCIA showering more at almost all points we see near perfect agreement up until around 1GeV, where
PHOTOS then starts radiating more than VINCIA. As we go on it is worth keeping this in mind and
seeing if there is some relationship between the fraction of the total energy contained in final state masses
and where VINCIA radiates more or less than PHOTOS.

5 Technical Subtleties

Now that we have done a preliminary comparison between our showers for the simplest cases, it is
worth considering implementation differences that could be affecting the results we see. Specifically in
comparison to VINCIA, what is the minimum photon energy we see in PYTHIA and PHOTOS and when
comparing to EVTGEN what is the mass distribution of our mother particles and how does that affect
our results.

5.1 Infrared Cutoff

Here we would like to look at the effect that our infrared cutoff has on the results we see. As we saw in
section 2.2, we still need to introduce some infrared cut off kmin. As while our collinear singularities are
regulated by the emitter masses, we do not have something equivalent built in for the soft divergence.
Experimentally these limits are enforced by the minimum photon energy that we can resolve. Where
precisely this cut off is placed varies between the different software we are using and can thus affect the
results of observables which are not infrared and collinear safe. An observable is infrared safe if it is
unchanged by the addition of a infinitely soft particles, and is collinear safe if it is unchanged by a single
particle becoming two comoving particles [16]. While in principle we would like to compare software with
identical cutoffs and we would in a more detailed investigation with more time, we can see where these
cutoffs lie and keep them in mind when interpreting results. We start by looking at the distribution of
the softest photons we see from each generator and comparing that to the number of photons we see
emitted.
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(a) Number of photons emitted of VINCIA, PYTHIA and PHOTOS for J/Ψ → e+e−.

(b) Number of photons emitted in VINCIA, PYTHIA and PHOTOS for J/Ψ → µ+µ−.

Figure 5.1: The graphs of the softest photons emitted in VINCIA (purple), PYTHIA (red) and PHOTOS
(blue).

We can see that both PYTHIA and PHOTOS will emit significantly softer photons than VINCIA. This is
particularly notable since PYTHIA and VINCIA should both have a cutoff for photon energy at around
1keV which we do observe in VINCIA but PYTHIA emits significantly softer photons. The softest photon
we see in PYTHIA is different for the J/Ψ → e+e− and J/Ψ → µ+µ−, a full exploration of this is beyond
our discussion here, though it is worth noting for future investigation. The fact that PYTHIA is resolving
softer photons than VINCIA and emits more photons than VINCIA, yet both emit the same amount of
energy clearly demonstrates a fact that is relatively intuitive; The number of photons, and by extension
the angular distribution of photons, is not infrared safe and potentially neither is the energy distribution.
The infrared unsafe quantities can still give us meaningful information about the differences between
our software, we just need to ensure we are careful with drawing our conclusions. These are even more
important to keep in mind when comparing infrared unsafe quantities between VINCIA and PHOTOS, as
PHOTOS doesn’t generate radiation using a parton shower and so the potential for confounding factors
is greater.
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(a) Number of photons emitted of VINCIA, PYTHIA and PHOTOS for J/Ψ → e+e−.

(b) Number of photons emitted in VINCIA, PYTHIA and PHOTOS for J/Ψ → µ+µ−.

Figure 5.2: The graphs of the number of photons emitted per event in VINCIA (purple), PYTHIA (red)
and PHOTOS (blue).

In alignment with this we see that PYTHIA emits the most photons per event and has the least events
with no radiation, followed by PHOTOS and finally VINCIA having the most events which don’t radiate.
This changes how we think about the difference between VINCIA and PHOTOS in figures 4.10 4.11. The
significant difference is in the first bin, which we initially believed to be caused by PHOTOS having more
events that don’t radiate, we can now say that this is most likely caused by PHOTOS radiating lots of
events with few photons that are softer than those in VINCIA.

5.2 Mass Distribution

The mass distribution of our mother particles can also contribute significantly to the amount of radiation
we see, this is only relevant for comparisons to PHOTOS since VINCIA and PYTHIA use the same
system for generating mother particles while we interface to PHOTOS through EVTGEN. The results
in sec.4 were created using the default mass distributions for the J/Ψ and so we can graph the mass
distributions in each event generator.
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Figure 5.3: The graph of the mass distribution of the J/Ψ in VINCIA and EVTGEN.

We can see that in the case of the J/Ψ, VINCIA generates a symmetric distribution around the nominal
J/Ψ mass, whereas EVTGEN seemingly generates all of the J/Ψ’s at a value in line with the peak of
this distribution. The distribution is quite small with the tails stretching about 1MeV either side of the
peak. If we change our Breit-Wigner mode in VINCIA to use the nominal mass of the J/Ψ we get the
following graph.

Figure 5.4: The graph of the mass distribution of the J/Ψ in VINCIA with ParticleData:modeBreitWigner
= 0 and EVTGEN.
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The binning on these two histograms is slightly different, but we can see that all of the J/Ψ’s are created
in the same bin at the nominal J/Ψ peak. When we look again at the affect this has on the total amount
of energy radiated in the J/Ψ → e+e− decay in fig.5.5 we see that this has a negligible affect on the
amount of energy radiated.

Figure 5.5: The graph of the total amount of energy radiated in PHOTOS/EVTGEN (blue), VINCIA
using the nominal J/Ψ mass (red) and standard VINCIA (purple).

With this in mind we can move forward knowing that for hadrons with a small width relative to their
nominal mass, such as the J/Ψ which in VINCIA has a nominal mass of 3.09692GeV and a width of
0.00009GeV we can neglect the difference in mass distribution between VINCIA in EVTGEN. We should
now consider the mass distribution for particles with larger relative widths such as the ρ whose width
is approximately 20% of the nominal mass. When comparing the mass distribution for the ρ+ meson in
EVTGEN with the standard mass distribution of VINCIA we obtain fig. 5.6.
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Figure 5.6: Distribution of the ρ+ mass in VINCIA (purple) and EVTGEN (blue).

We can see that not only do we have a significantly different shape between the two distributions but
EVTGEN generates significantly heavier ρ mesons. The total amount of energy radiated per ρ decay will
be significantly different with these two distributions as the ρ mesons generated in EVTGEN can radiate
far more energy due to the larger mass. We can change the Breit-Wigner mode to change the VINCIA
distribution and veto EVTGEN events with masses greater then the largest we see in VINCIA to get
fig. 5.7.
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Figure 5.7: Distribution of the ρ+ mass in VINCIA with ParticleData:modeBreitWigner = 3 mode(purple)
and EVTGEN with a veto on any ρ mesons with a mass greater then 1.5GeV (blue).

While we can see that there is still some difference in the mass of the ρ meson the difference is
relatively small and should not have a significant effect on results. This is an area where we would like to
be able have more control over the way in which we interface with PHOTOS, however we are currently
restricted by the structure of EVTGEN.

6 Hadronic Decays

Now we can look at the decay modes which are of the most interest to us, decays with hadronic daughter
particles. First we will look at two body decays, before looking at higher multiplicity decays and finally
at decays where the incoming hadron is charged. Similarly to the leptonic decays the angular distribution
and energy distributions are normalised per photon unlike the amount of energy radiated which are per
event.

6.1 Two Body Decays

When looking at two body decays we will look at three decay modes, D0 → π+π−, D0 → K+K− and
D0 → π+K−. This lets us check that we are handling mass effects in our two body hadron decays in the
same way that we did in section 4.

6.1.1 VINCIA Results

We start by looking at the amount of energy radiated in these decays in fig. 6.1.

28



Figure 6.1: The total amount of energy radiated for D0 decays to π+π− (blue), K+K− (red) and π+K−

(purple).

Here we see the what we would expect, the decay to pions has the largest tail and radiates the most, the
decay to kaons has the smallest tail and radiates the least, while the decay to one pion and one kaon sits
between them. The decay mode with both a kaon and a pion sits closer to the decay to the pair of pions
than it does the pair of kaons.

(a) Comparison of angular distribution of photons
for D0 decays to π+π− (blue), K+K− (red) and
π+K− (purple).

(b) Comparison of energy distribution of photons
for D0 decays to π+π− (blue), K+K− (red) and
π+K− (purple).

Figure 6.2: The graphs of angular distribution of energy for D0 decays to π+π− (blue), K+K− (red) and
π+K− (purple) in VINCIA.

Here we can see that as we would expect we see a stronger suppression in the collinear region for the more
massive K+K− final state than the π+π−. We also see that the π+K−, looks like it has the distribution
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of the kaon final state at low angles to the K− and looks the the distribution of the pion final state at
the high angles (low angle to π+). In both the energy and angular distribution we see that a higher
proportion of photons and energy are emitted collinear to the pion, this is also what we would expect as
the pion is less massive.

6.1.2 Comparison to PYTHIA

Now that we are confident that our results are internally consistent we can compare to PYTHIA.

(a) Comparison of total amount of
energy radiated for D0 → π+π−

in VINCIA (purple) and PYTHIA
(blue).

(b) Comparison of total amount of
energy radiated for D0 → K+K−

in VINCIA (purple) and PYTHIA
(blue).

(c) Comparison of total amount of
energy radiated for D0 → π+K−

in VINCIA (purple) and PYTHIA
(blue).

Figure 6.3: The graphs of the total amount of energy radiated for D0 decays to π+π−, K+K− and π+K−

in VINCIA (purple) and PYTHIA (blue).

In all three cases we can see that PYTHIA and VINCIA agree in the soft regions but PYTHIA radiates
more at higher energies. PYTHIA also has a slightly larger tail for both modes which contain pions in
the final state. We continue to see the difference seems to be mostly affected by the peak in the first bin.
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(a) Comparison of the angular dis-
tribution of photons for D0 →
π+π− in VINCIA (purple) and
PYTHIA (blue).

(b) Comparison of the angular dis-
tribution of photons for D0 →
K+K− in VINCIA (purple) and
PYTHIA (blue).

(c) Comparison of the angular dis-
tribution of photons for D0 →
π+K− in VINCIA (purple) and
PYTHIA (blue).

(d) Comparison of the energy dis-
tribution for D0 → π+π− in
VINCIA (purple) and PYTHIA
(blue).

(e) Comparison of the energy dis-
tribution for D0 → K+K− in
VINCIA (purple) and PYTHIA
(blue).

(f) Comparison of the energy dis-
tribution for D0 → π+K− in
VINCIA (purple) and PYTHIA
(blue).

Figure 6.4: The graphs of angular distribution of photons (top row) and energy distribution (bottom
row) for D0 decays to π+π−, K+K− and π+K− in VINCIA (purple) and PYTHIA (blue).

We can see when comparing between the angular distribution with the angular energy distribution we
see a similar effect that we saw in section 4.2 where PYTHIA emits a larger portion of its radiation in
the most collinear region than VINCIA and this effect is made more pronounced once the energy of the
individual photon is considered.

6.1.3 Comparison to Photos

Finally we can compare these decays to the Photos results.
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(a) Comparison of total amount of
energy radiated for D0 → π+π−

in VINCIA (purple) and Photos
(blue).

(b) Comparison of total amount of
energy radiated for D0 → K+K−

in VINCIA (purple) and Photos
(blue).

(c) Comparison of total amount of
energy radiated for D0 → π+K−

in VINCIA (purple) and Photos
(blue).

Figure 6.5: The graphs of angular distribution of photons (top row) and energy distribution (bottom
row) for D0 decays to π+π−, K+K− and π+K− in VINCIA (purple) and PYTHIA (blue).

The trend of VINCIA radiating more than Photos in the harder regions continues from what we saw in
section 4. Unlike the leptonic case however, where the agreement is better for the heavier muon final
state, in the hadronic case we seem to see the opposite effect, where VINCIA seems to start radiating
more than Photos sooner for the heavier states.

6.2 Four Body Decays

We want to check that we are consistent in decays with a multiplicity greater than two, however the
angular quantities we have been using so far in two body decays do not provide much insight in higher
multiplicity decays. This is because the kinematics of a particle at rest to four decay products are far
more varied than the simple case of a two body decay where we know what the orientation of the daughter
particles must be, so we will just be looking at the amount of energy radiated. These are also the cases
where we can really see the effect of the dipole approximation as opposed to the full multipole shower. We
only make a comparison between VINCIA’s full shower, VINCIA’s dipole approximation and PHOTOS
because the main PYTHIA shower is hard coded to only treat two body decays.
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Figure 6.6: The total amount of energy radiated for B0 → K+K−π+π− in VINCIA (purple) and
PHOTOS (blue).

We see a strong agreement between VINCIA and PHOTOS at all points. The trend of VINCIA showering
proportionally more outside of the first bin, where PHOTOS is more prominent, continues. We can also
use this decay to see the effect of the VINCIA’s dipole approximation.

Figure 6.7: The total amount of energy radiated for B0 → K+K−π+π− in VINCIA’s full shower (purple),
PHOTOS (blue) and VINCIA’s dipole approximation (red).

We can see that the dipole approximation radiates less than VINCIA at higher energies but more than
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Photos until past 1GeV Photos takes over. This is interesting and perhaps something to look at in more
depth in the future. This effect is potentially caused by the fact that higher energies are likely to require
the radiation of more photons and so the difference between the dipole and the multipole becomes more
prominent at higher energies, causing PHOTOS to overtake the dipole approximation.

6.3 Charged Initial State

We also need to compare the way that we treat decays where the initial hadron is charged and to that
end we will be looking at the decay of ρ+ → π+π0. As far was we have been able to confirm the specific
formalism of an RF antenna is unique to VINCIA and so we would like compare it to the more standard
approach.

6.3.1 Comparison to PYTHIA

We start by comparing how the results we get in VINCIA compare to our results from PYTHIA.

Figure 6.8: The total amount of energy radiated for ρ+ → π+π0 in VINCIA (purple) and PYTHIA
(blue).

We can clearly see that PYTHIA radiates more in the softest regions, before VINCIA starts radiating
more in the harder regions. A feature that is somewhat interesting is that excluding the first bin, which
contains the events that don’t radiate, the line for PYTHIA looks to be linear. As opposed to VINCIA
which looks like it would be linear if it weren’t for a bump that appears around where the two lines cross
and before it then drops off around 0.4GeV. We can now go to look at the angular distributions for this
process.
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(a) Comparison of angular distribution of photons
for ρ+ → π+π−.

(b) Comparison of energy distribution of photons
for ρ+ → π+π−.

Figure 6.9: The graphs of angular distribution of energy for ρ+ → π+π0 VINCIA (purple) and PYTHIA
(blue).

This graphs both have the general shape that we would expect, with the majority of the events being
emitted at a small angle to the π+ and a steady drop off towards the π0. We see that PYTHIA emits far
more in the most collinear region than VINCIA which is consistent with what we see in figures 4.6b and
4.8b. More interestingly is that when we eight the inputs by their energy we see a similar ratio between
VINCIA and PYTHIA at small angles to the π+, but seemingly much harder radiation in the direction
of the π0 in VINCIA than in PYTHIA. This is consistent with fig. 6.8 where we see VINCIA radiating
proportionally more energy than PYTHIA. This gain in the proportion of radiation in the π0 direction
can be thought of as radiation which is collinear to the ρ+.

6.3.2 Comparison to PHOTOS

We still want to compare the amount of energy radiated in VINCIA with PHOTOS.
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Figure 6.10: The total amount of energy radiated for ρ+ → π+π0 in VINCIA (purple) and PHOTOS
(blue).

Here we see a significant difference between PHOTOS and VINCIA. PHOTOS, like PYTHIA, appears
to be linear. Unlike PYTHIA however PHOTOS radiates significantly less than VINCIA at all points
except for the softest cases. This level of disagreement is significantly larger than any other we’ve seen
between VINCIA and PHOTOS. We have seen however that the mass distribution for the ρ in EVTGEN
and VINCIA is significant even with a veto (fig. 5.7). We can get a measure of this effect by comparing
to a different decay to a hadron with a smaller width as compared to its nominal mass, such as the B+.
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Figure 6.11: The total amount of energy radiated for B+ → π+π0 in VINCIA (purple) and PHOTOS
(blue).

We see a similar effect in the B+ decay, a reasonable level of agreement in the softest regions but with
VINCIA radiating more at all energies and having a larger tail. This indicates that there is a significant
systematic difference between the treatment of charged hadron decays in VINCIA and PHOTOS. This
is an area that we would like to explore more in the future, however due to technical limitations we
are currently unable perform more comprehensive comparisons. In principle we would like to look at
the angular distributions of photons and the energy of individual photons in PHOTOS. Additionally,
comparing the PHOTOS treatment of analogous decays that we have a better understanding of how
PHOTOS handles the situation such as W → ℓνℓ. In the VINCIA treatment the antenna used in this
decay would be similar to a two body decay for a spin one charged hadron, such as the ρ.

6.4 Baryon Decay

So far we have only been comparing the decay of mesons, quark anti-quark bound states, but we should
ensure that we see a similar agreement in the decay of baryons, bound states of three quarks.

6.4.1 Comparison to PYTHIA

We start by comparing the amount of radiation emitted between PYTHIA and VINCIA for the decay of
Λ0
b → pπ−.
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Figure 6.12: The total amount of energy radiated for Λ0
b → pπ− in VINCIA (purple) and PYTHIA

(blue).

As with the decays of D0 → π+π− in fig. 6.3, we see an agreement in the energy emission events, with
PYTHIA radiating proportionally more in the intermediate region before the drop off into the highest
region with lacking statistics. The shape of the PYTHIA graph is also very similar in the middle region,
with it being flatter with a sharper drop off as opposed to VINCIA which has a smoother drop off.

(a) Comparison of angular distribution of photons
for Λ0

b → pπ−.
(b) Comparison of energy distribution of photons
for Λ0

b → pπ−.

Figure 6.13: The graphs of angular distribution of energy for Λ0
b → pπ− VINCIA (purple) and PYTHIA

(blue).

Here we see results consistent with what we would expect, the proton has a larger mass and so experiences
a larger suppression, while the lighter π− experiences less suppression and a relative enhancement. In
alignment with previous comparisons, PYTHIA radiates proportionally more at the collinear peaks than
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VINCIA. In the energy distribution we again see results consistent with what we have seen so far, with
PYTHIA radiating far more energy proportionally in the most collinear regions than VINCIA, while
VINCIA radiates proportionally more at wide angles.

6.4.2 Comparison to PHOTOS

When comparing the amount of energy radiated between VINCIA and PHOTOS we see something
interesting.

Figure 6.14: The total amount of energy radiated for Λ0
b → pπ− in VINCIA (purple) and PHOTOS

(blue).

While we see very good agreement for much of the graph, this is a case where PHOTOS actually radiates
more than VINCIA at higher energies rather than less. We can add the radiation from PYTHIA and see
that we still have a greater agreement still in VINCIA.
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Figure 6.15: The total amount of energy radiated for Λ0
b → pπ− in VINCIA (purple), PHOTOS (blue)

and PYTHIA (red).

We would like to compare an additional baryon decay, to check if this is an anomaly in this specific decay
or if it is indicative of a trend in hadron decays. We choose to compare with a similar decay Λ0 → pπ−.

(a) Comparison of the amount of energy radiated
for Λ0 → pπ− in VINCIA (purple) and PYTHIA
(blue).

(b) Comparison of the amount of energy radiated
photons for Λ0 → pπ− in VINCIA (purple) and
PHOTOS (blue).

Figure 6.16: The graphs of the amount of energy radiated for Λ0 → pπ−.

We see as similar effect here as in the other Λ decay and so it seems to be a systematic difference in the
way these decays are handled, perhaps owing to the a matrix element correction in PHOTOS which is
not present in VINCIA.
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7 Future Extensions

While we have a functional implementation for hadron decays there are many avenues for further in-
vestigation, both in terms of additions to our treatment and a more thorough comparison with existing
software. We have found so far in our comparisons to PHOTOS that VINCIA radiates proportionally
more at in all bins outside of the first. With this in mind it would be worth restricting our binning range
and looking in this first bin, to better understand what is happening here. Similarly we would like to
be able to compare the amount of energy radiated given that the event actually radiated, this would
similarly give insight into how technical details, such as the QED cutoff affect our results. Additionally
comparing not the absolute amount of energy radiated but instead the fraction of total energy which was
radiated, could allow us to see trends that we do not see in the absolute amount of energy radiated. We
would also like to run tests where we are directly interfacing with PHOTOS in VINCIA, this will allow
us to use different, more physical normalisations for our histograms rather than normalising the area
under each histogram to one. This would also allow us to test more observables for PHOTOS such as
the angular and energy distributions as we would not be limited by the current EVTGEN environment.
Alternatively, we can mitigate some technical factors by using the EVTGEN interface to VINCIA which
is under development. Finally, we can investigate the decay of W± bosons as being analogous to the
decay of a ρ+ and see if the differences between radiation off of charged initial states persist. This is an
especially good decay to look at as we know that PYTHIA has matrix element corrections implemented
for the decay of W± bosons.

There are also many ways we would like to build on our current implementation. Firstly, we would like
to add an antenna for spin-three-halves particles in a similar way that we have for spin-half and spin-
one particles in the antenna functions defined in eq. (2.4.8) and eq. (2.4.9). As mentioned in section 3,
while this exists in the code it is identical to the spin-half antenna. In addition, we would like a way
to implement form factors in our radiation. As mentioned in section 2.1 the form factor of a hadron
describes the way that it varies from point particle. Currently all of our hadrons radiate as if they were
point-like and so to really describe the way hadrons radiate having the option to introduce form factors
if they are known.

We would also like to implement a fully interleaved decay in a similar manner to that outlined in
Ref. [33] for interleaving the electroweak and QCD showers. The goal of interleaved decays in the hadron
decay case would be for proper treatment of cascade decays. There are two main cases where we would
want this, the first is in the cascade decay of a charged particle where we do not want to go all the
way down to the minimum of our p⊥ scale then decay the charged particle and use it in an initial
shower starting again at the highest p⊥, this leads to a double counting and potential over radiation. An
interleaved treatment would allow us to shower down to the scale where we would expect the decay to
occur and then continue showering of the resonance decay. In a similar case if we decay to two neutral
particles we would like to start showering off of the decay products of the shorter lived particle for some
period, before we introduce the interference from the decay of the longer lived particle.

While for most decays simply treating the decay using the above the hadronisation scale treatment is
accurate, we would like to describe some decay modes using the below the hadronisation scale treatment.
An example of such as Λ+

c decays which contain quarks in the final state. A longer term goal may
additionally be to consider how an electrically charged string would radiate.

Finally we would like to consider the effect that turning on the QED shower has on the branching
ratios of our decays. For example, the η meson has decays to γγ, γe+e− and γµ+µ−. These ratios for
these three decays can be affected by the splitting kernel of the VINCIA shower, which describes the
probability of a photon splitting into a pair of fermions, such as an electron-positron pair. We would like
to have a look out how this splitting affects the ratio of the three decay modes and whether the ratio
is inclusive or exclusive of these splitting effects. Similarly we would like to include the effects of vector
meson dominance [34, 35, 36], this phenomenon is caused by the photon splitting to a pair of quarks,
where the photon can then interact as a vector meson. This mixing between vector mesons, such as the
ρ0, can affect the possible decays since for example a ρ0 can decay to a pair of pions which a photon can
not directly decay to. A similar treatment could be used as in VINCIA’s electroweak shower [37], where
instead of modelling the emission of a photon we model the emission of a ρ0.
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8 Conclusion

In conclusion we have implemented a novel approach to QED radiation off of hadron decays, through
using the Vincia parton shower. This method differs from other methods by being a parton shower
rather than a pure “after-burner”, where radiation is all handled after the decay process. This approach
seems to replicate the results of existing methods such as PHOTOS quite well, with the advantages of
being internal to VINCIA, such as maintainability and being more easily expandable. In performing
our comparisons to Photos, we found that the Vincia implementation radiates more energy for a higher
proportion of its events outside of the first bin. Additionally, we found an abnormally large disagreement
in the case of a decaying charged hadron, which we plan to look into by considering the analogous decay
of the W± boson. There are multiple ways we would like to expand on this implementation, such as the
addition of a spin-three-halves antenna and form factors.
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