Heavy Flavours in PYTHIA - Status and News

Peter Z Skands — U of Oxford & Monash U

Tuning

 \otimes Decay(s) \otimes QED Radiation

Quark Mass Effects in VINCIA

Gehrmann-de Ridder, Ritzmann, PZS, <u>1108.6172</u>

Production — Nonperturbative Aspects

B spectrum = Perturbative Fragmentation (α_s) \otimes Lund-Bowler Fragmentation Function:

$$f(z) = N \frac{(1-z)^a}{z^{1+r_Q b m_Q^2}} \exp\left(\frac{-bm_{\perp h}^2}{z}\right)$$

Monash Tune

- Light-flavour event shapes $\rightarrow \alpha_s$
- $N_{\rm ch}$ and $x_{\rm ch}$ spectra \rightarrow Lund a and b parameters
- ALEPH D* spectrum $\rightarrow r_c$
- DELPHI & SLD B spectra $\rightarrow r_{h}$

Interplay between matching, retuning, and HF fragmentation (r_c , r_b , etc) needs dedicated study? Aware of some efforts. Coordinated? Person-power ... ?

Alternatives?

By default, Peterson (or similar) not consistent with string fragmentation, but ...

Note on Heavy-Flavour Tagging

Taggers trained on combination of data-driven & MCs Performance (& Uncertainties!) depend (at least partially?) on: Fidelity of MC modelling + in-situ constraints

Fundamental physics of confinement not a solved issue LHC discoveries: Strangeness and baryon enhancements, collectivity, ... New (more advanced) MC hadronizaton models are being developed

Colour reconnections,

Octet (gluon) vs triplet (quark) fragmentation,

Colour ropes,

String Junctions

Coalescence

Close-packing,

String interactions,

Flow / String Shoving,

Hot strings,

. . .

Excited strings,

(+ Onium Production)

Hard Processes NRQCD MEs

New: "Fragmentation" Shower with $g \rightarrow \text{Onium} + X$

+ Colour Reconnections?

"Accidental" low-mass $Q\bar{Q}$ singlets

(depends on CR assumptions & rate of low-mass QQ pairs)

Related: PYTHIA study of Bc and other doubly-heavy hadrons via MPI + CR, T. Hadavizadeh et al., 2205.15681

Question: not totally clear how to match the two

(LETO — P. Ilten & N. Cooke <u>2312.05203</u>)

Question: spacetime suppression due to small size?

Optimisation

Egede, Hadaviz

Userhooks

Inspect the eve and *veto* if ther isn't what we w

We can check at difference energy scales μ

Speed Gains & Subtlety

Current implementation isn't perfect

- Small probability for heavy quarks to be produced at scales *below* their mass

→ Work in progress with T. Hadavizadeh

These user hooks have **significantly** reduced generation times

PYTHIA & B Decays — Recent collaboration with EVTGEN (Warwick)

30% of B meson decays modelled as partonic transitions, with spectator

Passed back to PYTHIA for re-hadronisation (with simple phase-space models). How reliable is this modelling? Not aware anyone has looked closely at that since org papers. These tend to be high-multiplicity (multi-prong) modes Rarely used as signals. But enter as backgrounds, and tagging modes? Experimental constraints on these? Belle II, LHCb, ALICE ... ? Example: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.092004

QED Radiative Corrections in B Decays

HERWIG and SHERPA have dedicated modules, based on "YFS" formalism For PYTHIA, QED in hadron decays is normally done with **PHOTOS** Now: looking at adapting the QED Multipole Shower Module from VINCIA Native C++ and built-in in PYTHIA \rightarrow thread-safe and trivial to parallelise May be superior to YFS in some ways + modern shower formalism \implies matching, merging, finite-width effects, form factors?, ...

Types of (QED) Showers

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.

$$+\frac{s_{e^-\gamma}}{s_{\gamma e^+}}+2
ight)$$

QED Multipole Radiation Patterns

Soft Photon Emission: [Dittmaier, 2000]

$$|M_{n+1}(\{p\}, p_j)|^2 = -8\pi c$$

Peter Skands

Same-charge pairs ➤ negative terms

Conventional "sequential" treatment

Treat each decay (sequentially) as if alone in the universe

Question:

What about radiation at energies $E_{\gamma} \lesssim \Gamma_t$ (and $E_{\gamma} \lesssim \Gamma_W$)?

Beyond the Narrow-Width Limit

What does a long-wavelength photon see?

It should not be able to resolve the (short-lived) intermediate state

Interleaved Resonance Decays

Should affect radiation spectrum, for energies $E_{\gamma} \lesssim \Gamma$ + Interferences and recoils between systems => non-local BW modifications

Beyond the Narrow-Width Limit

What does a long-wavelength photon see? It should not be able to resolve the (short-lived) intermediate state

Interleaved Resonance Decays Brooks, PZS, Verheyen, SciPost Phys. 12 (2022) 3, 101 [arXiv:2108.10786]

Idea: apply this to Hadron Decays + QED => Sophisticated Model of interplay between radiation and decays (finite-width effects, beyond NWA)

Should affect radiation spectrum, for energies $E_{\gamma} \lesssim \Gamma$ + Interferences and recoils between systems => non-local BW modifications

During 2024: New Pythia Tuning, to replace Monash Tune as default

What input/constraints/requirements are crucial for you?

Continue work on heavy-flavour baryons & HF+strangeness

String Junctions Revisited arXiv:2404.12040

[...] heavy quarks hadronization: from leptonic to heavy-ion collisions <u>2405.19137</u>

Optimisation

Improved mass thresholds in PYTHIA's FSR & MPI algorithms, with T. Hadavizadeh (Monash). Forced hadronization to specific species, with weights calculated, instead of re-hadronization.

Decays

New Project with Warwick/EvtGen to apply new state-of-the-art perturbative techniques to hadron decays, including:

QED Multipole Showers, Modern Fixed-Order Matching Techniques (e.g., MECs), Interleaved Resonance Decays New theory post doc starting at Monash in October: Jack Helliwell (+ F. Abudinen at Warwick.)

Iterated MECs in VINCIA

Extra Slides

1. Types of (QED) Showers

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown. Peter Skands

$$+\frac{s_{e^-\gamma}}{s_{\gamma e^+}}+2
ight)$$

Beyond 2-body Systems: QED Multipoles

PYTHIA QED

Determines a "best" set of dipoles. No genuine multipole effects. I.e., interference beyond dipole level only treated via "principle of maximal screening" Works as a parton shower evolution (+ MECs) \succ interleaved with QCD, MPI, ...

YFS QED [Yennie-Frautschi-Suura, 1961 > several modern implementations]

Allows to take full (multipole) soft interference effects into account "Scalar QED"; no spin dependence.

I.e., starts from purely soft approximation; collinear terms not automatic Is not a shower; works as pure afterburner, adding a number of photons to a final state with predetermined kinematics; no interleaving

VINCIA QED [Kleiss-Verheyen, 2017 > Brooks-Verheyen-PS, 2020]

Allows to take full (multipole) soft interference effects into account Not limited to scalar QED; includes spin dependence

I.e., starts from antenna approximation; including collinear terms Works as a parton shower evolution; can be interleaved (+ MECs).

What's the problem?

Example: Quadrupole final state (4-fermion: $e^+e^+e^-e^-$)

Why was this not done as a shower before?

The orange terms are negative \succ negative weights (+ big cancellations) YFS gets around that by not being formulated as a shower (& no spin dependence) Utilises that the sum is always non-negative.

What does VINCIA do differently?

Sectorize phase space: for each possible photon emission kinematics p_{γ} , find the 2 charged particles with respect to which that photon is softest \succ "Dipole Sector"

Use dipole kinematics for that sector, but sum all the positive and negative antenna terms (w spin dependence) to find the **coherent emission** probability.