Emergent Phenomena at High Energies

Peter Z Skands — Royal Society Wolfson Visiting Fellow — U of Oxford & Monash U

Australian Government Australian Research Council

The Goal

Use measurements to test hypotheses about Nature **Basem El-Menopolis + past members** Frederic Dreyer \mathbf{E} Rok Medves Rob Verheyen

Problem 1: no **exact** solutions to QFT ➜ Perturbative **Approximations** collaboration The PanScales collaboration Plan New techniques **PanScales** → New insights into perturbation theory at non-trivial orders $\frac{\omega}{\epsilon}$ \rightarrow new applications Elementary Field Interactions

logari

 $-$ Glob - Non-- Frag - Mult Dasqup[®] [1805]

The Goal

Use measurements to test hypotheses about Nature

Problem 1: no **exact** solutions to QFT ➜ Perturbative **Approximations**

Problem 2: We collide — and observe — **hadrons**

Strongly Bound States

The Goal

Use measurements to test hypotheses about Nature

Problem 1: no **exact** solutions to QFT ➜ Perturbative **Approximations**

New techniques → New insights into perturbation theory at non-trivial orders

 \rightarrow new applications

Elementary Field

Interactions

— CONFINEMENT — CONFINEMEN New measurements challenge **Problem 2** conventional paradigms \rightarrow study confinement beyond static limit

Problem 2: We collide — and observe — **hadrons**

Strongly Bound States

Plan

Emergent Phenomena at High Energies

G. H. Lewes: *"the emergent is unlike its components insofar as … it cannot be reduced to their sum or their difference." English Philosopher; coined the term "emergence" in "Problems of Life and Mind", 1875*

In Quantum Field Theory:

"Components" ~ Elementary interactions — encoded in ℒ

"Sums" ~ Perturbative expansions ~ combinations of elementary interactions

What else is there? Structure beyond (fixed-order) perturbative expansions:

Fractal scaling, of jets within jets within jets …

& loops within loops within loops …

Confinement (in QCD), of coloured partons within hadrons

Ulterior Motives for Studying QCD

 $Z = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$
 $\frac{1}{\frac{1}{2}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$
 $\frac{1}{\frac{1}{2}} + i\overline{\psi}\psi\psi + 4.c.$
 $\frac{1}{2}F^{\mu\nu}\psi\psi + 4.c.$
 $\frac{1}{2}F^{\mu\nu}\psi\psi + 4.c.$ *+ ?* The Standard Model

LHC: 90% of data still to come

→ higher sensitivity to smaller signals.

High statistics **↔︎** high accuracy

Consider a hadron; why is it complicated?

Undergraduates: Quark-Model wave functions

Real-Life Hadrons

Strongly bound states of quarks and gluons With a complicated time-dependent structure

For wavelengths \gtrsim proton size: Can't do perturbation theory u d g u p Figure by T. Sjöstrand

at momentum fraction \mathcal{L}^2 and probing scale \mathcal{L}^2 and probing scale \mathcal{L}^2

To the Rescue: Asymptotic Freedom

Over short distances \ll proton radius:

Quarks and gluons do behave like approximately free particles \sim plane waves \rightarrow can do perturbation theory

Parametrise nonpeturbative "mess" in terms of **probability** densities for each type of plane \mathbf{wave} $(g, d, \bar{d}, u, \bar{u}, s, \bar{s}, ...):$

p (universal and measurable) Parton Distribution Functions

at momentum fraction \mathcal{L}^2 and probing scale \mathcal{L}^2 and probing scale \mathcal{L}^2

Mathematically expressed via a Factorization Theorem •

(Example of factorization of short- and long-distance physics)

Organizing High-Energy Scattering Problems

Organizing High-Energy Scattering Problems

Organizing High-Energy Scattering Problems

String Interactions

Perturbative Approaches

P.T. ~ Calculate the area of a shape (${\rm d}\sigma$) with higher and higher detail

Difference from exact area $\propto \alpha^{n+1}$

Perturbative Approaches

P.T. ~ Calculate the area of a shape (${\rm d}\sigma$) with higher and higher detail Difference from exact area $\propto \alpha^{n+1}$

Fractal Schmactal

Parton Showers \rightarrow Explicit representation of the fractal structure - great!

Needed approximations to get there: "Leading Logarithm", "Leading Colour", … ➤ Off-the-shelf parton showers only good to at best ~ 10%

I thought LHC physics was supposed to be high-precision stuff? What good is Peta-Bytes of data if we can only calculate to \sim 10% ?

Precision Frontiers

Shower Accuracy

Higher-order corrections within the showers themselves

Oxford: **PanScales** with "NLL-accurate" recoils \rightarrow NNLL; that's why I'm on sabbatical here Monash: Vincia: 2^{nd} -order shower kernels, new "direct" $2 \rightarrow 4$ branchings, iterated MECs

Matching & Merging @ NNLO

Combine fixed orders and showers

Oxford: MiNNLOPS (Silvia Z. + collaborators) Monash: VinciaNNLO (PZS + Ludo & Basem + collaborators) → N³LO?

Fabrizio & collaborators

Why go beyond **Fixed-Order** perturbation theory?

๏ Schematic example:

- For an arbitrary "hard process"
	- ("hard" means involving a **large momentum transfer** $Q_{\text{hard}} \gg 1 \,\mathrm{GeV}$)

Calculation of the **fraction of events** that pass a **bremsstrahlung veto**

(i.e., **no additional jets** with momentum transfers $> Q_{\text{veto}}$):

$$
\frac{LO}{1} - \overbrace{\alpha_s(L^2 + L + F_1)}^{\text{NLO}} + \overbrace{\alpha_s^2(L^4 + L^3 + L^2 + L + F_2)}^{\text{NNLO}} + \dots
$$

 $L \propto \ln(Q_{\text{veto}}^2 / Q_{\text{hard}}^2)$

 $($ Logs arise from integrals over propagators $\boldsymbol{\alpha}$ 1 $\overline{q^2}$

The Case for **Embedding** Fixed-Order Calculations **within Showers**

Bremsstrahlung Resummations (Showers) extend domain of validity of perturbative calculations

The Case for **Embedding** Fixed-Order Calculations **within Showers**

%-level precision @ LHC \Rightarrow NNLO + NNLL Targeted by several groups

Not quite there (yet) — but close …

Our Approach: Sector Showers

*g*3

 \rightarrow Unique properties (which turn out to be useful for matching):

• Unambiguous scale definitions

Shower operator is **bijective** & true **Markov chain**

• Achieves LL with a single history (instead of factorial number)

(Generalisations to $g \to q\bar{q}$ and multiple Borns \Longrightarrow sums)

๏ Work in progress on NLL and beyond (with Ludo & Basem)

NNLO Matching with Sector Showers

๏ Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator

• Harnesses the power of showers as efficient phase-space generators for QCD **Efficient:** Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

๏ Different from conventional Fixed-Order phase-space generation (eg VEGAS)

NNLO Matching with Sector Showers

๏ Continue parton-shower evolution afterwards

No auxiliary / unphysical scales \Rightarrow expect small matching systematics (+ generalises to N3LO?)

Need:

D **Organizing High-Energy Scattering Problems**

D **Organizing High-Energy Scattering Problems**

D **Organizing High-Energy Scattering Problems**

New Discoveries in Hadronization

What a strange world we live in, said ALICE Ratio of yields to (

Ratios of **strange** hadrons to pions strongly increase with event activity

Charm hadronization in pp (1):

More charm quarks in baryons in pp than in e+e– and a mapli signs Charm hadronization in pp (3) Λ_c^2 Θ^0 ^{$\rm H$} Θ^+ of significantly different than in

Back to Basics — Anatomy of (Linear) Confinement

On lattice, compute potential energy of a colour-singlet $q\bar{q}$ state, as function of the distance, R , between the q and \bar{q} : $\,$ attice, compute potential energy of a colour-singlet $q\bar q$

A New Set of Degrees of Freedom

The string model provides a mapping: *g*(*B*) *R*¯ Quarks > String endpoints Gluons ➤ Kinks on strings Further evolution then governed by string world sheet (area law)

+ string breaks by tunnelling

By analogy with "Schwinger mechanism" in QED (electron-positron pair production in strong electric field)

➤ Jets of Hadrons!

∝

exp (

 $-\pi m_u^2$ *u*,*d κ*)

Beyond the Static Limit

Regard tension κ as an emergent quantity? Not fundamental strings

May depend on (invariant) time *τ*

• E.g., hot strings which cool down Hunt-Smith & PZS 2020

May depend on spatial coordinate *σ*

Working with E. Carragher & J. March-Russell (Oxford).

May depend on environment (e.g., other strings nearby)

• Two approaches (so far) within Lund string-model context:

Colour Ropes [Bierlich et al. 2015; + more recent…]

Close-Packing [Fischer & Sjöstrand 2017; Altmann & PZS 2024]

Non-Linear String Dynamics? String Dynamics Enhancer

 $\overline{\mathbf{E}}$

LE

MPI \Longrightarrow lots of coloured partons scattered into the final states $\frac{1}{2}$ Strangened into the initial strangence

Count **# of (oriented) flux lines** crossing $y = 0$ in pp collisions (according to PYTHIA) $\operatorname{\mathsf{And}}$ classify by SU(3) multiplet: *y* = 0 $Multiplets$ ($y=0$, pp 7 TeV) Close-packing

What about Baryon Number?

Types of string topologies:

Could we get these at LHC?

String Junctions at LHC ?

Stochastic sampling of SU(3) group probabilities (e.g., 3⊗3 = 6⊕3)

Thank you

