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(Introduction): DGLAP, Antennae, and Dipoles

Factorisation of
(squared)
amplitudes in IRC
singular limits

28 - 1 /S, S

g qg
+ +— K 46.4(Zg) K 46.4(Zg)

Sqge%¢a % \ Sqg  S¢q +

eikonal term collinear terms ng qu
One term for each parton
One term for each Two terms for each
Not a priori coherent. colour connection colour connection
Angular ordering restores Coherent by Coherent by
azimuthally averaged eikonal construction construction

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.
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Why Antenna Showers?

Note: originally called “dipole showers” [Gustafson & Pettersson, 1988]; now confusing due to advent of new generation of (partitioned) dipole showers.

No need to partition the eikonal
— easier to ensure positive definite kernels.

In dipole showers, two separate terms must be > 0O, while in antenna showers only the
equivalent of their sum needs to be > 0.

+ Antenna-style recoils: both parents absorb transverse recoil, rather than just one (though
still not as general as PanGlobal)

Intrinsically coherent
Incorporates the fully differential eikonal (at Leading Colour)
m Coherent for any (sensible) choice of evolution variable

DGLAP + angular ordering only reproduces the eikonal in an integrated sense (averaged
over azimuth).

Fewer terms: S ,
Number of Histories for n Branchings

n=1 n=2 n=3 n=4 n=5 n=~6 n==1v

CS Dipole 2 8 48 384 3840 46080 645120
Global Antenna 1 2 6 24 120 720 5040
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1. Early Proof of Concept

Hartgring, Laenen, PS, JHEP 10 (2013) 127 (arXiv:1303.49/74) m Vincia 1.1 (Apr 2013)

Shower for Z — hadrons corrected through @(asz)

 Double-real (Z = ggge & Z — qgq'q) based on iterated tree-level ME corrections [Giele,
Kosower, Skands, 2011] through Z — 6 from MG4, with “smooth ordering” (now abandoned)

* Hardcoded one-loop corrections to Z — gg and Z — ggg (massless quarks; LC)

e Double-virtual Z — gg via unitarity (here just normalised total rate to unity).

Starting from Z — ¢g:

Compute NLO exclusive 3-jet cross section (with veto scale Q) at fixed order and in
shower; define matching condition in limit Q4 = O (in dim.reg)) l

(Could stop at hadronisation scale = power corrections in Qpaq)

i O(a?) 2Re | MO Mi*
Mo 3@ (1 V) BB Q)0 @2,0). O g (14 2R LML AET

0 ’2
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. % Qg 2(:7@ % 17,/% ’@S\/@,% o8 ~/oo oﬁ %, \S‘OQ/ fo’b 4 s, Fixed-Order O(x<2)
Vo 5o 0 08, @ Sy, %R, % S5, "% S0 7%, i
\9/%) 6% z‘% s O S, (’7/&’6 g%, Of&/é/) obf Qc?/@ 4% (in dim. reg.)
" gy So 755 So, % 6.7 8.5, % U578 i =
o,Q/Z‘ V%% % % 6@ A % /,,9 ,o% Qo %, oe&&;o Q‘of (renormalised at p = pvE)
£
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How it works

No-emission probability
above 3-parton scale

ME- Corrected

No-emission probability
below 3-parton scale

Solve for V3  map v = PRl o o (e oy, ()

Hps

OCSCA 34
, — 205 (e, 117 [3q9) — 21(3) (€, 1/ 59q) + &
Here expressed in terms of the (N)LO 2 [ “ v I
Z — 3 amplitudes, Mé) and M;, and + %[ 20V (e 1 [549) — 210 (e, ;ﬂ/sgq—)—ll
standard (GGQG) antenna subtraction e e
OQSCA 2 std 2
. Std ] . (1) + o [87?' /2 dq)ant Ag/qq + 87T/ d(I)a.nt 5Ag/q(j
functions, A%, with integrated poles I'". < Q3
2 s;
The actual shower uses A9 + 54 - Z8ﬂ2/0 AP (1— Opy) A3y + 287? / dPant 044/
j=1
evolution scale O, and orderin 2 .
. Q = 9 aQZF[_Zgw Py /O APan(1 — Osj) AL + Z&r / Ao 647/
functions Oy and Og for emissions and =
.. . 1
splittings respectively N P (jﬁ) (3.55)
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on-divergent NLO correction
— positive-definite NLO antenna

Plots of V3

2 - O(a?)
Myoraa| AS@QD) (14 V37) A2m(@F, Q) A554(Q%,0) 7 [MF)7 {1+

Poles +—— Cancel

Partial cancellations

she to define L evolution so as to

ave no (resummable) logs left

— Differential “K-factor” for 2— 3 branchings

2Re | M3 M3*|

if Q is IR safe

M3 |2

—> Poles
Double Logs

> Single Logs (incl p-dep)
Nonsingular terms
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2. From MECs = Shower kernels?

Li & PS, PLB 771 (2017) 59 (arXiv:1611.00013)

~. Possible to base a shower framework on similarly derived
® /[ "differential K-factors” for all antenna functions?

Elements

lterated 2 — 3 and new "direct 2 — 4" branchings (in lieu of “smooth ordering”) populate
complementary phase-space regions.

Ordered clusterings = iterated 2 — 3

Unordered clusterings = direct 2 — 4 (+ higher, for sequential unordered steps)

Need appropriate scale definitions, 2 — 4 kernels, kinematics maps, and a2 — 4
Sudakov sampler (with good efficiency in the relevant phase-space regions).

+ Virtual corrections to 2 — 3 kernels

Considerations of Shower Type: Global vs Sector Antennae

Conventional (“Global”) antenna functions can be integrated over all of their phase
spaces = simple one-loop integrals. (But scale definitions are tricky; see later.)
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The 2 — 4 Branching Phase Space

Nesting of 2 — 3 Phase Spaces

Ordering/partitioning function
(global or sector)

For a given clustering: d(I)n—|—1 — d(I)n X d(I)ant Nant

L. Generalisation to many possible clusterings: dq)n_|_1 = ®ant,id®:q/
1=1
Global showers:fi = 1 multiple cover (® strong ordering)

~ conventional showers; antenna functions sum to total singularities

Sector showers: f; = partition of unity (® strong ordering)

~ deterministic jet algorithms  (e.g., Lopez-Villarejo & PS: JHEP 1111 (2011) 150)

mi121M23

In(p,) 4 p=

Either can technically cover all of the M An

multiple-emission PS; 1st emission Inaccessible to 2nd
. at pt1 emission
but @ strong ordering — > bl (not strongly ordered)

No leading logs

== A regions with allfl = 0 (no ordered paths)

inaccessible to ordered shower based
on iteration of n—=n+1

8Ty
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How big are these regions? And what logs live there?

Giele, Kosower, PS: PRD84 (2011) 054003

Flat scans of N-parton phase space (RAMBO)

o 1 \ E 1
c% Z— 4 ' /Z— 5 ; Ze 6 :
2 Vincia 1.025 + MadGraph 4.426 ' Vincia 1.025 + MadGraph 4.426 ] " Vincia 1.025 + MadGraph 4.426 |
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Getting There: Direct 2—4 Branchings

Li & PS: PLB771 (2017) 59

Redefine the shower resolution scale

For unordered 2—4 paths: scale of 2nd branching defines resolution

The intermediate on-shell 3-parton state is merely a convenient stepping

stone in phase space = integrate out

Unordered sequences
Ordered

A sequences Q A On-shell representation of intermediate
Q On-shell representation of e state at C has no physical meaning.
intermediate state at C has Oub--- N .
Qual-- : - A Contributing diagrams are
some physical meaning.
PRy S far off shell:
Lower-scale branching at D
Qpf-------5- at most g.ives factor 2 Qs Qg is the only
; correction to Qc. relevant physical
scale
@) EEEEEEEEEEEEEEEDE @76 REEEEELELEEEELEED
Qpbememmmmmeee L0 Q Qpt i
] ] ] ) ] ] | )
0 1 2 n 0 1 2 n

Our approach: continue to exploit iterated on-shell 2 — 3 factorisations; but in
unordered region let Qg define evolution scale (integrate over Qc)

Peter Skands ‘ﬁ\ Monash U.
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Getting There: Direct 2—4 Branchings

Li & PS: PLB771 (2017) 59

Redefine the shower resolution scale

For unordered 2—4 paths: scale of 2nd branching defines resolution

The intermediate on-shell 3-parton state is merely a convenient stepping
stone in phase space = integrate out |

New: Direct 2—4 Sudakov | Interchange order of integrations
(no on-shell intermediate state) lh Q2—>3 s QB—'4
02 0 Unordered phase space: Q4 > Q3
0 0
[ ae e 403 610} - 0 /(Q3, 0} =/

Originally, the 3—4 phase space Now the

03
is nested inside the 2—3 one f dQ4f dQ3 f(Q3, Q4) { intermediate

(Unordered) scale is
/integrated over for

for a generic integrand, f, with the result: each value of Qu
| | | )
24(0F, 0%) = exp - Q4 Q3
sca.b Product of
Figure 1: Illustration of scales and Sudakov factors in strongly o 3 ot ; +#23 functions
ordered (ACD), smoothly (un)ordered (ACB), and direct 2 — di, 53 |] 3J4] Ay 2Ry s S3'S 1
4 (AB) branching processes, as a function of the number of lae O3 (167T2)2m2 2 0 27 k‘_) 3
emitted partons, n. (11)
Jacobian for LIPS — ngdQ4dC3dC4 2—4 MEC

Note: this is not a very pedagogical exposition; will try to come up with a better one
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Combining 2—4 with lterated 2—3

Split the 2—4 phase space into non-overlapping sectors
Pure 2—4 sector: inaccessible to iterated 2—3 (no ordered paths)
= add new “direct” 2—4 branchings without risk of double-counting

Rest of phase space (accessible to at least one ordered 2—3 path)

Unitarity (Sudakov exponentials and virtual corrections): want to sum inclusively over
the “least resolved” degree of freedom

Classity according to what a jet algorithm (with shower evolution parameter as
clustering measure) would do. E.g., for a (colour-connected) double-emission:

A jet clustering algorithm (ARCLUS) would

1
grab the smallest of these pr values, and
~ Mi1oMo3 cluster
2 Pl2 = -
123 If the resulting path is ordered: populate
by iterated 2— 3 (with 2—4 MEC factors
__ M23mM34 Y ( , , )
3 pi3 = If unordered, keep clustering; direct 2—n
1234
Clustering terminates when we reach a Q, > min(pr2,pT3...)
4 = defines point as 2—2+m  (so farwe only do 2—3 and 2—4!)

1y
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Phase-Space Distributions

Li & PS: PLB771 (2017) 59

Test of d} : qg — qggg Actual shower runs:

—~ 2
o~ _
S Z-qgggq <R> N Z— qggq 91.2 GeV N Z— qg9q 91.2 GeV
N using d° 210°¢ Z107E
=4 B 4 s F without 2— 4 shower % i with 2— 4 shower
Q Ke) r
'g g10g . 8 10% —— 2t03 branchings
i’ L Iterated 2_;3 qq A E lterated 2_’3 -4 2to4 branchings
£ 1
g + 2 gluons
@
5 10™ Ry
3 O/‘fsc
S P 2 e
J o 10 E 2\‘ )
S 0. . B Z -
o [ o
3 2 0% E
0 Q‘_ o E S
-5 -4 -3 -2 |'1 2 p2 0 : A | S 4l ! ! \ S
n(p. /p2,) 107 ) 0 2 5 , 1074 05 0 05 ., 1
log, (Q;/Q3) Iog10(Q4/Q 3)
0o . H— gggg 125 GeV H— gggg 125 GeV
Test of f, : 99 — gggg 210%] 2107
— —2 % F without 2— 4 shower T_EU i with  2— 4 shower
Ne-: H gggg <R4> -8 10 ? § 10 ? —*— 2t03 color connected
-y using fz o [ lterated 2—3 F [terated 2— 3 0 2104 branchings
- r
= g9 1
£ + 2 gluons
° 10 P
@ 102¢ ‘2
§ | : Ny
s o : 3l S
£ ® = 107 :
° 3 -
-5 | | | | | | | 1 1 | 1 1 | 1 > -4 1 1 | 1 1 | 1 1 | 1 >
10742 0 2 4 10 05 0 05 , 1
Iog10(Q4/Q3) Iog1O(Q4/QS)

Figure 3: Top left: the ratio of sequential clustering scales Q4/ Q5 for a strongly ordered 2 — 3 shower, for Z — gggg (on log-log
axes). Top right: closeup of the region around Q./Qs ~ 1, with 2—4 branchings included. Bottom row: the same for H — gggg. .

Details of trial functions etc, see Li & PZS: PLB771 (2017) 59
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Second-Order Evolution Equation (Global Shower)

Li & PS: PLB771 (2017) 59

Putting 2—3 and 2—4 together = evolution equation for dipole-
antenna at O(:2):

2
dN(Q;, O )
~ POWHEG inside exponent 102 AD ¢ 5(Q Q (D3)) Cl3
(Hoeche, Krauss, Prestel ~ MC@NLO inside exponent) o - -0 (2—)3—4 antenna function
Cl%’ e ) */ 2 2
lterated 2—3 — X1+ 5+ dd;, 4’32—>4 s3 | A(Qp, O7)
with (finite) one-loop correction ds sea,b ¥ ord (2—)3—4 MEC
Direct 24 — o+ f D, 50>~ 0% (D4))Ro-,45355M(03, Q2>]
(as sum over “a” and “b" subpaths) sea.p ¥ unord 2—4 as explicit product x MEC

Only generates double-unresolved singularities, not single-unresolved

Note: the equation is formally identical to:

A5 01 =
dDs /" But on this form, the
dep2 6(Q — QX(®3)) (a5 + a3) A(Q5. 0°) oole cancellation
dDy happens between the
> deI)z 6(Q° = Q°(y)) a4 A(QO’ 0, (3 two integrals

.y
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Differential 2nd-Order Corrections (Global Shower)

(with direct 2—4 instead of smooth ordering)

Work in progress...

. | " Differential 2nd-Order Correction for 2—3 kernels
ots by Hai Tao Li

1.0'_. |||||||||||||||| ] 10l ~ ' '~ '~ T T T T T T T ]
V] for a3 V4§ for o { —1045
0_8'_ (with as(mz)/2m) — 0.20 0_8'_ (with as(mz)/2m) 1T L
I I — 035
= 0.15 r
QQ — QGQ oo 5 QG — QGG
= = 025
(new treatment) - ol
_ 0.15 From X deca
From Z decay " ol X y
0 I 0.05
00 , B &
0.0 0.2 0.4 0.6 0.8 1.0
yij
1.0_ IIIIIIIIIIIIIIII ]
[ v} for €%
' (with as(mz)/27) 1 12
— 1.0
GG — GGG Q00
0.05 Note: large corrections
From H decay for g—qq
. 4 (leading pole only 1/yj)
yij yij
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Interlude: A Magic Wand (for Merging)?

Yesterday, Christian Gutschow asked for a magic wand that could
speed up MC calculations by a factor 2.

| don’t have a factor-2 wand :(

/Complexity of current merging algorithms

But | do have a factorial-

100777
complexity to constant- o0 i
complexity wand, for 80
merging! 70
This requires a different Niz
shower paradigm 10
Which is anyway the one 0|
we are now pursuing for 2001
our final go at constructing 100
the 2nd-order shower ° "

14 Pyth la 8.304 Figure 1: Number of operations, N vs number of input items, n for algorithms of common complexities, assum-
ing a constant of 1. Polynomial (n?) or better scaling is usually considered efficient for complex problems, while
exponential (2") or factorial (n!) scaling are infamous for being highly resource demanding. Plot from Ref. [2].
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Vincia with Sector Merging: CPU and Memory Usage

Test case: pp — Z + merging with up to 9 jets + valgrind

Based on HDF5 ME samples [Hoche, Prestel, Schulz: PRD 100 (2019) 1, 014024] with
20 GeV merging scale

CPU Time / 1k Events GB of Allocated/Deallocated Memory

104 Exclusive Contributions to pp — Z 4 10 jets — 10t Exclusive Contributions to pp — Z 4 10 jets
? : : : : = E : : : ? 5
| =—a  VINCIA MESS | ‘ ‘ $) | == VINCIA MESS | i 2TB allocated/]
103}| ®—® PYTHIAMEPS| . ... ... . ‘% | e—e PYTHIA MEPS | deallocated |
2.3 GHz Intel Core i5 (3\(\ 4 & 103» """"""""""" """"""""""" T
— | 16 GB 2133 MHz LPDDR3' | 2 = ; | 1 g 1
L I\ N SIS I EIEIIII 3 100 GB
g f - » : - allocated/ :
g | | i i ‘ S 102 | S ...deallocated ...
s 10T et g : 3 3 3 ]
" i 1 ‘ 3 i ] >
: 3 : : : : 1 "8 |
g 100b s = i i i i
£ 5 3 3 3 ; ] RS L e B
E 10! tor Merging Ej | ‘ ‘ |
O e 3 . <10GB :
: ST S - Allocated/: ... .|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, @ Deallocated
, z
1073 i 2 1
0 2 4 6 8 10 4 6 8 10
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What are Sector Showers?

ldea first suggested to me by D. Kosower
Kosower, PRD 57 (1998) 5410; PRD 71 (2005) 045016
But also, e.qg., Larkoski & Peskin, PRD 81 (2010) 054010; PRD 84 (2011) 034034

In conventional (“global”) showers, each branching kernel can populate the full
d®, ,/d®,, subject only to the condition of ordering in the evolution variable.
As highlighted earlier, this generates a multiple covering of phase space.

The overlapping PS regions are not a problem if the shower kernels are defined such that
their sum reproduces the full singularity structure of the (squared) matrix elements.

This is how all modern dipole and (global) antenna showers work (to my knowledge).

This is also what produces the proliferation of histories.

In a sector shower, only one kernel is allowed to populate each d®,, | point.

Each kernel must therefore contain the full singularity structure of its sector (generally
corresponding to a sum over global functions that, at least, includes any singular ones).

First implementation, arXiv:1109.3608, later abandoned (for NLO corrections and the move
to pp), now resurrected for pp, arXiv:2003.00702, with full mass and helicity dependence.
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Sector Showers

Brooks, Preuss, Skands, arXiv:2003.00702

Consider H — gg + shower

At g,8:8; level, there are three possible clusterings

veto

veto

T o y j T y i 02 04 06 08 1.0 y ik

04 04

Sector shower trial emission (of gluon j) is vetoed if p, ; is not the smallest scale in the
event after the branching. (Recoils not allowed to make any other p, smaller than p, ;)

=» Scale of 8,8;8x Is uniquely defined (history independent) = min(p, ;, Py ;»P1x)

Creates a unique (bijective) shower history that corresponds exactly to a jet algorithm
(anyone remember ARCLUS?) = one term per PS point at any n (constant complexity)
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Outlook Towards 2nd-Order Sector Showers

Full-fledged sector shower (including Il, IF, RF, and FF antennae with mass effects)
Ready for upcoming Pythia 8.303 or 8.304.

Will replace the existing Vincia global antenna-shower model in Pythia 8.
Brooks, Preuss, Skands, arXiv:2003.00702

Full-fledged implementation of sector merging algorithm in final validation stages.

Expect public release soon after shower itself (before end of 2020).

2nd order corrections; focus so far on what we can do:

Baseline check: all (LC) single- and double-unresolved limits explicitly reproduced, apart from
some confusion remaining for the global case in the triple-collinear limit. (Should be solved by
the move to sector showers.)

No work has so far gone into further measuring or testing its log accuracy.

Adapting direct 2 — 4 branchings to sector context relatively straightforward (?)

Interested in the PanScales work on recoils and ordering variables.

Current work focuses on the sector integrals for the 2nd-order virtual corrections

A rollercoaster of eureka moments and dead ends.

.y
Peter Skands 7\, Monash U.



Extra Slides



The Solution that worked at LO: Smooth Ordering

Wanted starting point for (LO) matrix-element corrections over all
of phase space (good approx = small corrections)

Allow newly created antennae to evolve over their full phase spaces, with
suppressed (beyond-LL) probability: smooth ordering

Giele, Kosower, PZS: PRD84 (2011) 054003

2 — 1 for Pln < Pl n—-1

P = 1/2 f
In A 1mp 2 2 —1/2for pip ~ D1 n-1
(P1) Pin_1 TP,

instead of strong ordering
(analogous to POWHEG hfact)

— 0for pipn>pin-a

2 2

. 1 1 1/p%,  ordered
Ay 7y ~ —5— FPimp—5— X
Pin—1 Pin

1/p%,  unordered

Leading Logs unchanged

Fischer, Prestel, Ritzmann, PZS: EPJC76 (2016) 11, 589

m?2 2 2 2 2 2
1 dg m 1 5 [Q1 Q1 m
—InA /2 p —QJ‘ In [—2 ] ~ (5 In {—2 +In|—==|In _Q2
P 1+ —Qg q1 q1 ry I 1
€1

L

Figures from Fischer, Prestel, Ritzmann, PZS:
EPJC76 (2016) 11, 589

(b) Smooth Ordering

Note: this conclusion appears to differ from that of Bellm et al., Eur.Phys.J. C76 (2016) no.1

My interpretation is that, in the context of a partonic angular ordering, they neglect the additional rapidity range from the extra origami folds

8Ty
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Smooth ordering: An excellent approxima

(at tree

10
evel

@ 1 ] ] ]
[&]
i Fz-4 Z—5 ; Z—6 ;
& Vincia 1.025 + MadGraph 4.426 Vincia 1.025 + MadGraph 4.426 ] Vincia 1.025 + MadGraph 4.426 |
£10"F Matched to Z— 3 Matched to Z—3 Matched to Z—3
o Strong Ordering Strong Ordering Strong Ordering
(@]
5 ]
Strong NI
L
— Ypg
- - my-ord
10° ARI
i I
1
104 RN IR SRS T S S T BT
N N & 05 %% (Pé)/'IKE’AE)'2 % (Pé)/'E/IE)
R 1 Sum (shower-paths) %o %0
N = 10810 (LO,LC)
| My 2
g 1 1 1 1
®© . .
s t L4 Z— 6
% Vincia 1.025 + MadGraph 4.426 Vincia 1.025 + MadGraph 4.426 Vincia 1.025 + MadGraph 4.426
210" F Matched to Z— 3 Matched to Z—3 Matched to Z—3
°c Smooth Ordering Smooth Ordering Smooth Ordering
S
Smooth T R
i GGG,y No uncontrolled
- - GGG, s tails even at 2—6
10° ARI, y 5 (qg & g9)
10-4 | IR | | | |

2 -1. - -0.5

0 0
Iog (PS/ME

Even after three sequential shower emissions, the smooth shower approximation
is still a very close approximation to the matrix element over all of phase space

Monash U.
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(Why it works?)

The antenna factorisations are on shell

n on-shell partons = n+1 on-shell partons

In the first 2—3 branching, final-leg virtualities assumed ~ O

Strong Ordering:

these virtualities /

small compared to these virtualities <:

Any 2—4 Feynman diagrams we draw will involve intermediate

on shell

755 propagators with virtualities of order the last p72 scales
Z

Cannot be neglected in unordered part of phase space

1 Pip(n — n+1) 1
Interpretation: off-shell effect S b =
e R e 7

Good agreement with ME = good starting point for 2—4

8Ty
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The problem with Smooth Ordering

Smooth ordering: nice tree-level expansions (small ME
corrections) & good 2—4 starting point

But we worried the Sudakov factors were “wrong” = not good starting
point for 2—3 virtual corrections? Not good exponentiation?

Q) A
/3 For unordered branchings
(e.g., double-unresolved)
effective 2—4 Sudakov factor
effectively = LL Sudakov for
ol intermediate (unphysical) 3-
parton point
Q
Hartgring, Laenen, PZS, JHEP 1310 (2013) 127
| | >

0 1 2 n
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2—4 Trial Generation

1 4 2 23 53 In particular, the trial function for sector A (B) is
(1672)2 Qirial — (167 2)2 Airial (QS)P imprig] (Q1) independent of momentum pg (p3) which makes it
) 178 easy to translate the 2 — 4 phase spaces defined in
- C (%) . (15) ¢a (6) to shower variables. Technically, we gen-
(Q% - Qﬁ)QézL erate these phase spaces by oversampling, vetoing
configurations which do not fall in the appropriate
. . sector.
Solution for constant trial o , o a
w2 0 Acceptratio:  p2-o4 _ Zs ¢
ﬂtrla ’ —CJ I 20 m trial N
205, 00 =Cle 8n? Q? Q%Q2 Xs Airial

> Q% = mexp (— \/lnz(Qg/m2) + 2fR/CAY%)

where fR = —47‘[2 In R/(IH(Z)CI[) . (Same lzeta as in GKY)

Solution for first-order running e A2 (kﬁmz)”grééey@w N
s (also used as overestimate K2 | 4A2 |
for 2-loop running): where
Inkgm? /4N , Inkim®/4A°
- 1nk2Q2/4A2 oP [_f RDo - 1nk§Qg/4A2] ’
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— Differential “K-factor” for 2— 3 branchings

Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

Solve for V3
2Re | M3 M3*|

2 - O(a?)
My g AJQD(1+V57) A0s(QF, Q1) A34(Q%,0) 5 [MZ]7 {1+

0|2
Poles «—— |M3 ‘
Cancel if Q is IR safe — Poles
Non-divergent NLO correction Use 1 dF’afrjtial cancellations
— positive-definite NLO antenna |, © detine LL evolution so as to Double Logs

ave no (resummable) logsleft ~— * Single Logs

(B-dependent logs)
Can do some Sudakov integrals analytically + transcendentality-0

But not all = split into analytic and numerical parts

Use that smooth-ordering already gave a good approximation,
which can be integrated fairly easily

E9: Qg =1- Y [ dbuasy 121 +0(0?)
ord
h

/ /
acl.2 (2 5303 34 + Gg_,303_,4

A
ordering boundary ~ complicated 2—=4 ME-correction factor

+ Z /dq)anta3—>4pimp Difference done numerically;

1,2 . . : : .
acl, Doable analytically; (slow but can be parametrised in terms of two invariants)

contains all single-unresolved poles

Peter Skands " Monash U.



Sector Showers

Scale definition

Global showers are not truly Markovian (history independent), in the sense that a generic n-

parton configuration could have been produced by many different histories (all contributing to
one and the same configuration).

Not a problem from the pure (LL) shower point of view. But each history has its own (set of)
intermediate (and final) scales. This makes the analytical calculation of, and matching to,

deterministic NLO jet rates delicate and difficult on the shower side, and casts doubt on the
iteration.

Sector showers, on the other hand, have a single unique history, with a single clearly defined
set of scales. Simplifies matching conditions (at the price of harder integrals).

Natural sectorisation in 2 — 4

When separating the 2 — 3 and 2 — 4 phase spaces, we split the 2 — 4 phase space into two
sectors. Part of the iterated 2 — 3 phase-space was included in the 2 — 4 sectors.

Awkward to keep global structure for the remaining iterated 2 — 3 part.

Scaling of Histories with Multiplicity: Magic Wand for Merging

For merging applications, the factorial growth in the number of histories can be a
computational bottleneck. This would be obviated in a sector shower approach.
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