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Recap from Yesterday: Loops and Legs
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๏Factorisation of amplitudes (squared) → 
approximate all-orders fractal 

•Universality (scaling) 

๏Universal poles for soft & collinear 
bremsstrahlung
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The corrections from 
Quantum Loops are missing
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๏R = some “Infrared Safe” phase space region (Often a cut on p⊥ > X GeV) 
๏

P.  S k a n d s

Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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Z decay:
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|MX+1|2

|MX |2 /

We know from Unitarity (KLN): 
Real + Virtual = Finite
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From Legs to Loops

3M o n a s h  U n i v e r s i t yP.  S k a n d s

From Legs to Loops

๏Parton Showers: reformulation of pQCD corrections as gain-loss diff eq. 
•Iterative (Markov-Chain) evolution algorithm, based on universality and unitarity 

•With evolution kernel ~            (or soft/collinear approx thereof) 

•Generate explicit fractal structure across all scales (via Monte Carlo Simulation) 
•Evolve in some measure of resolution ~ hardness, virtuality, 1/time … ~ fractal scale 
•+ account for scaling violation via quark masses and gs

2 → 4παs(Q
2
)

12

Kinoshita-Lee-Nauenberg:  
(sum over degenerate quantum states = finite: infinities must cancel!) 

!

Neglect non-singular piece, F → “Leading-Logarithmic” (LL) Approximation

Unitarity: sum(probability) = 1

→ Can also include loops-within-loops-within-loops … 
→ Bootstrap for approximate All-Orders Quantum Corrections!
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→ Can also include loops-within-loops-within-loops … 
→ Bootstrap for approximate All-Orders Quantum Corrections!
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see PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

http://arxiv.org/abs/arXiv:1207.2389
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Evolution

4M o n a s h  U n i v e r s i t y
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Evolution

5M o n a s h  U n i v e r s i t y
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% 
of σtot

Evolution
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Evolution Equations

7

๏What we need is a differential equation 
•Boundary condition: a few partons defined at a high scale (QF) 
•Then evolves (or “runs”) that parton system down to a low 
scale (the hadronization cutoff ~ 1 GeV)  

•→ It’s an evolution equation in QF 

๏Close analogy: nuclear decay 
•Evolve an unstable nucleus (+ follow chains of decays)

M o n a s h  U n i v e r s i t y

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,
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d�
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s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,
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where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,
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This case is especially simple, since the decay probability per unit time, c
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decay probability per unit time, is minus the derivative of �,
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In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,
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(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,
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1, Q

2
) , (15)
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Decay probability per unit time

(requires that the nucleus did not already decay)

= 1� cN�t+O(c2N )

∆(t1,t2) :  “Sudakov Factor”
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The Sudakov Factor

9

๏In nuclear decay, the Sudakov factor counts:  
How many nuclei remain undecayed after a time t 

๏The Sudakov factor for a parton system counts: 
The probability that the parton system doesn’t evolve (branch) 
when we run the factorization scale (~1/time) from a high to a 
low scale 

M o n a s h  U n i v e r s i t y
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Evolution probability per unit “time”

(replace cN by proper shower evolution kernels)
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(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)

6

Probability to remain undecayed in the time interval [t1,t2]

(replace t by shower evolution scale)
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Born
{p} :  partons

But instead of evaluating O directly on the Born final state,  
first insert a showering operator

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say 1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is 2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss the different matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

Born 
+ shower S : showering operator

{p} :  partons
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H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
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=
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Formally, this operator — the evolution operator — will be responsible for generating all (real and
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3

H = Hard process

Unitarity: to first order, S does nothing
S({p}H ,O) = � (O �O({p}H)) + O(↵s)
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(Markov Chain)

The Shower Operator
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๏ To ALL Orders 

• All-orders Probability that nothing happens

M o n a s h  U n i v e r s i t y

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
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dt
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dt
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∣

∣

∣
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∑
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∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

“Nothing Happens”

“Something Happens”

(Exponentiation) 
Analogous to nuclear decay 

N(t) ≈ N(0) exp(-ct)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

“Evaluate Observable”→ 

“Continue Shower”→ 
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p2 = t < 0

ISR:FSR:

p2  > 0

Virtualities are 
Timelike: p2>0

Virtualities are 
Spacelike: p2<0

Start at Q2 = QF
2 

“Forwards evolution”

Start at Q2 = QF
2 

Constrained backwards evolution 
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft …
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Initial-Final Interference
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Separation meaningful for collinear radiation, but not for soft …

Who emitted that gluon?

Real QFT = sum over amplitudes, then square → interference (IF coherence) 
Respected by dipole/antenna languages (and by angular ordering), but not by 
conventional DGLAP (→ all PDFs are “wrong”)

+

๏Illustrates quantum ≠ classical



P e t e r  S k a n d s

Coherence
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand

Approximations to 
Coherence: 

Angular Ordering (HERWIG) 

Angular Vetos (PYTHIA) 

Coherent Dipoles/Antennae (ARIADNE, 
Catani-Seymour, DIRE, VINCIA)

More interference effects can be included by matching to full matrix elements

→ an example of an interference effect that can be treated probabilistically



P e t e r  S k a n d s

p
0 5 10 15 20

ra
te

0

0.01

0.02

0.03

Pythia

Vincia (default)

Vincia (enh. antennae)

20 40 60 80 100 120

-410

-310

-210

20 40 60 80 100 120

-410

-310

-210

Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Coherence at Work
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๏Example: quark-quark scattering in hadron collisions   
•Consider one specific phase-space point (eg scattering at 45o)  
•2 possible colour flows: a and b

M o n a s h  U n i v e r s i t y

a) “forward” 
colour flow

b) “backward” 
colour flow
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

http://arxiv.org/abs/arXiv:1210.6345
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+0(2) +1(2) …

+0(1) +1(1) +2(1) +3(1)

Lowest 
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No. of Bremsstrahlung Emissions 
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

But ≠ full QCD! Only LL Approximation (→ matching)

๏ Start from an arbitrary lowest-order process (green = QFT amplitude squared) 
๏ Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (approximate infinite-order resummation)
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6

where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

๏ The final states generated by a shower algorithm will 
depend on

M o n a s h  U n i v e r s i t y

→ can give additional handles for uncertainty estimates, beyond just μR

(+ ambiguities can be reduced by including more pQCD → matching!)

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms, 
Reparametrizations, 
Subleading Colour

Phase-space limits / suppressions for 
hard radiation and choice of 

hadronization scale 
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Uncertainties in Parton Showers
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๏Very recently, HERWIG, SHERPA, PYTHIA, all published 
papers on automated calculations of shower uncertainties 

•Weight of event = { 1 , 0.7, 1.2, … } 

M o n a s h  U n i v e r s i t y

Originally proposed (for VINCIA) in  
Giele, Kosower & Skands; arXiv:1102.2126 

I encourage to start using those, and provide feedback
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵

s

choice mainly influences the amount of
broadening of the jets, while the ISR ↵

s

choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a t¯t, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e+e� ! hadrons events at the Z pole, compared
to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µ

R

= 2p?
(solid yellow lines with square symbols), µ

R

= p? (the default choice, solid blue lines with dot
symbols), and µ

R

= 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µ

R

variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵

s

|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the

10

PYTHIA 8: Mrenna & Skands; 
arXiv:1605.08352 

Example 1: 
Renormalisation
-scale variations
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Fig. V.16: Predictions for jet resolutions for W -boson productions at the LHC at LO+PS.
Results from reweighting runs CT14 æ MMHT2014 PDF are compared to the dedicated result for
direct use of the MMHT2014 PDF.
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3 Ntuples for NNLO events produced by EERAD3 7

We study the production of Ntuples based on the program EERAD3 which produces parton-level
QCD events to calculate event shapes and jet rates in electron-positron annihilation through to
order –3

s. The aim of this study is to assess the viability of Ntuples as a general way to have
NNLO results stored and made available to the experimental community.

3.1 Introduction
High precision calculations will be vital in the next phase(s) of the LHC in order to be able
profit from the high quality data being collected. In order to further explore the Higgs sector
and distinguish BSM e�ects from higher order e�ects within the Standard model, next-to-next-
to leading order (NNLO) predicitions are necessary for a number of proccesses. However, such
predictions are the results of complex calculations, which may take a considerable amount of time
and computing resources. Running such programs for various scale choices, parton distribution
functions and sets of cuts is a tedious, time consuming task.

For processes with multi-particle final states at NLO, one is faced with similar problems.
A possible solution, described in detail in Ref. [344], is to store the phase space points and
the corresponding matrix elememt weights, together with other relevant information, in Root
Ntuple files. This has the following advantages:

1. the results are flexible for (tighter) cuts to be applied at a later stage,
7 G. Heinrich, D. Maître
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SHERPA: Bothmann, 
Schönherr, Schumann; 
in arXiv:1605.04692

Example 2: 
PDF Variations

See also HERWIG++ : 
Bellm et al., arXiv:1605.08256 

http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1605.08256
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Figure 4: Illustration of the default nonsingular variations for ISR splitting kernels, corresponding to cNS =

±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Distribution of the p? spectrum of the lepton pair in
pp ! Z ! e+e�/µ+µ� at the Z pole (66 < m``/GeV < 116), for leptons in the phase-space window
|⌘`| < 2.4, p?` > 20 GeV; data from the ATLAS experiment [27].
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Hard Jets

19

๏Variation of non-singular terms; not controlled by shower 
•Example pT of Z boson in Drell-Yan production (= zero at LO) 

M o n a s h  U n i v e r s i t y

I encourage to start using those, and provide feedback

PYTHIA 8: Mrenna & Skands; 
arXiv:1605.08352 

Example 3: 
Non-Singular 
Term Variations

Pure  
Shower

Region of Hard Extra Jets

Originally proposed (for VINCIA) 
in Giele, Kosower & Skands;

With F.O. 
Matrix Element
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So combine them!

Jack of All Orders, Master of None?

20

๏Nice to have all-orders solution 
•But it is only exact in the singular (soft & collinear) limits 
•→ gets the bulk of bremsstrahlung corrections right, but fails 
equally spectacularly: for hard wide-angle radiation: visible, 
extra jets 

•… which is exactly where fixed-order calculations work!

M o n a s h  U n i v e r s i t y

See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

P. Skands Introduction to QCD
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Matching

http://arxiv.org/abs/arXiv:1207.2389
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Example:              .

21

๏ Born + Shower 

๏ Born + 1 @ LO 

M o n a s h  U n i v e r s i t y

22

+

+

2

Shower Approximation
to Born + 1

+ … 
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Born + Shower 

Born + 1 @ LO 

1

Example:              .
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2

+
|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF
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2sik
sijsjk

+
1

sIK

✓
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|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF
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sIK
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+ 2

◆�

Total Overkill to add these two.  All I really need is just that +2 … 

2

+ …
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1. Matrix-Element Corrections

23

๏Exploit freedom to choose non-singular terms 
•Modify parton shower to use process-dependent radiation 
functions for first emission → absorb real correction 

๏Process-dependent MEC → P’ different for each process 
•Done in PYTHIA for all SM decays and many BSM ones 

๏Based on systematic classification of spin/colour structures 
๏Also used to account for mass effects, and for a few 2→2 procs 

๏Difficult to generalise beyond 1st emission 
•Parton-shower expansions complicated & can have “dead zones” 
•Achieved in VINCIA (by changing from parton showers to 
“Markovian Antenna Showers”) 

•Only recently done for hadron collisions

M o n a s h  U n i v e r s i t y

Bengtsson, Sjöstrand, 
PLB 185 (1987) 435

Norrbin, Sjöstrand, 
NPB 603 (2001) 297

Parton Shower

P (z)

Q2
! P 0

(z)

Q2
=

P (z)

Q2

|Mn+1|2P
i Pi(z)/Q2

i |Mn|2| {z }
MEC

Giele, Kosower, Skands, PRD 84 (2011) 054003

(suppressing αs 
and Jacobian 
factors)

Fischer et al, arXiv:1605.06142

http://arxiv.org/abs/arXiv:1605.06142
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MECs with Loops: POWHEG
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Start at Born level
Nason, JHEP 0411 (2004) 040

Frixione, Nason, Oleari JHEP 0711 (2007) 070
+ POWHEG Box JHEP 1006 (2010) 043

Acronym stands for: Positive Weight Hardest Emission Generator. 

Note: still LO for X+1

Shower for X+2, … 

๏Method is widely applied/available, can be 
used with PYTHIA, HERWIG, SHERPA 

๏Subtlety 1: Connecting with parton shower 
•Truncated Showers & Vetoed Showers 

๏Subtlety 2: Avoiding (over)exponentiation of 
hard radiation 

•Controlled by “hFact parameter”
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2: Slicing (MLM & CKKW-L)

25M o n a s h  U n i v e r s i t yP.  S k a n d s

Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 

33
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F @ LO⇥LL-Soft (HERWIG Shower)
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)

P.  S k a n d s

Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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The Gain The Cost

26M o n a s h  U n i v e r s i t y

W + N jets 

R
A

T
IO

Plot from mcplots.cern.ch; see arXiv:1306.3436 

Shower (w 1 st order MECs)

MLM w 3 rd order Matrix Elements

NJETS1 2 30

Example: LHC7 : W + 20-GeV Jets

P.  S k a n d s

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV!
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; !

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

S l ic ing :  The  Cos t

35

0.1s
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1000s

Z→n : Number of Matched Emissions

2 3 4 5 6
1s

10s

100s

1000s

10000s

Z→n : Number of Matched Emissions

2 3 4 5 6

1. Initialization time 
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events 
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of sta
te of th

e art)

See e.g. Lopez-Villarejo & Skands, arXiv:1109.3608

Time

Matching Order

Example: e+e- → Z → Jets

http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1306.3436
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3: Subtraction
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๏LO × Shower ๏NLO

M o n a s h  U n i v e r s i t y

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Examples: MC@NLO, aMC@NLO
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Matching 3: Subtraction
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๏LO × Shower ๏NLO - ShowerNLO

M o n a s h  U n i v e r s i t y

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO
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Matching 3: Subtraction
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๏LO × Shower ๏(NLO - ShowerNLO) × Shower

M o n a s h  U n i v e r s i t y

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO
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Matching 3: Subtraction
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๏Combine → MC@NLO 
•Consistent NLO + parton shower (though correction events can have w<0) 

•Recently, has been fully automated in aMC@NLO

M o n a s h  U n i v e r s i t y

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

NB: w < 0 are a problem because they kill efficiency:   
Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision 
of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO
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POWHEG vs MC@NLO

31

๏Both methods include the complete 
first-order (NLO) matrix elements.  

•Difference is in whether only the 
shower kernels are exponentiated 
(MC@NLO) or whether part of the 
matrix-element corrections are too 
(POWHEG) 

๏In POWHEG, how much of the MEC 
you exponentiate can be controlled 
by the “hFact” parameter 

•Variations basically span range 
between MC@NLO-like case, and 
original (hFact=1) POWHEG case (~ 
PYTHIA-style MECs)

M o n a s h  U n i v e r s i t y
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h = 30 GeV, LHEF

NLO

Figure 1: Left: e↵ect of the damping factor Dh for di↵erent values of the scale h on the transverse
momentum distribution of a SM Higgs of mass equal to 125 GeV. The red dashed line is obtained
with h = mH/1.2 GeV, the green dot-dashed one with h = mH/2 GeV and the indigo dashed one
with h = 30 GeV. The blue continuous line corresponds to no damping. For the no damping case and
for h = 30 GeV we also show the results at the level of Les Houches Event File (LHEF). For reference
we show the NLO curve in gray. Right: ratio of the POWHEG prediction for the transverse momentum
over the NLO result. The color coding is the same as in left figure.

variation of the scale µ
res

in the interval [µ̄
res

/2, 2µ̄
res

] is customarily adopted.
The matching procedure requires to fix the integral of the Higgs transverse momentum distribution

to a constant, which is conventionally set to the value of the fixed order total cross section [56]. This
constraint holds exactly for any choice of µ

res

, so that any variation of the resummation scale modifies
the shape of the distribution but not its integral and yields thus a correlation between low- and
intermediate-pH? regions.

2.2 Numerical resummation in the NLO+PS framework

Another approach to the resummation of terms enhanced by the factor log(pH?/mH) is the one obtained
in the context of PS Monte Carlo, where the multiple emission of partons is numerically simulated
via the PS algorithm. The matching between the fixed order NLO-QCD results and the PS has been
discussed in refs. [63, 91, 92] and it is implemented in several tools regularly used in the experimental
analyses.

In a su�ciently general way we can write the matching formula as

d� = B̄s(�B)d�B

⇢
�s

t0 +�s
t

Rs(�)

B(�B)
d�r

�
+Rfd�+R

reg

d�. (1)

The phase space is factorized into the product of the Born and the real emission components, d� =
d�Bd�r. The Born squared matrix element is denoted by B while B̄ is the NLO normalization factor.

5

Plot from Bagnashi, Vicini, 
JHEP 1601 (2016) 056

The latter is defined as

B̄s(�B) = B(�B) + V̂
fin

(�B) +

Z
R̂s(�B,�r)d�r . (2)

In this formula V̂
fin

represents the UV- and IR-regularized virtual contribution. We use the hat to
indicate that an amplitude has been IR-regularized. The partonic subprocesses with the emission
of an additional real parton can be split into two groups: those that are divergent in the limit of
collinear emission, called R

div

, and the ones that are instead regular, R
reg

. We can further subdivide
the squared matrix elements of the divergent subprocesses in two parts:

R
div

= Rs +Rf . (3)

The term Rs contains the collinear singularity of R
div

, while Rf is a finite remainder. Finally, we use
the symbol �s

t for the Sudakov form factor, with t as the shower ordering variable:

�s
t = e�

R
dt0
t0

Rs

B
d�r✓(t0�t) . (4)

The splitting of R
div

in eq. (3) is defined up to a finite part which can be reabsorbed in Rs. In the
literature two di↵erent choices have been adopted: in POWHEG Rs = R

div

, while in MC@NLO Rs / ↵sPijB
is proportional to the product of the Born matrix elements times the relevant Altarelli-Parisi splitting
functions.

It is interesting to observe that di↵erent definitions for Rs generate higher-order e↵ects in the
matched di↵erential cross section. The possibility of defining the finite part Rf in an arbitrary way
can be exploited to parameterize the uncertainties related to the matching procedure.

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework

In the POWHEG-BOX framework, the separation between Rs and Rf can be achieved in a dynamical way
using the damping factor Dh, defined as

Dh =
h2

h2 + (pH? )2
. (5)

The divergent and the regular part of R
div

= Rs +Rf are then defined as:

Rs = Dh R
div

, Rf = (1�Dh) R
div

. (6)

The role of the scale h is to separate the low and the high transverse-momentum regions and it
therefore specifies the range of momenta for which the Sudakov form factor is possibly di↵erent from
1. In the limit pH? ⌧ h we obtain Rs ! R

div

and Rf ! 0. In this limit the Higgs pH? distribution
is suppressed by the Sudakov form factor. On the other hand, when pH? � h we have Rs ! 0 and
Rf ! R

div

and the Sudakov form factor tends to 1. In this latter regime the emission of a real parton
is described at fixed order by the matrix elements Rf = R

div

.
The di↵erential distribution generated according to eq. (1) contains higher order terms, beyond

the claimed accuracy of the calculation, due to the product of B̄ ⇥Rs. Indeed in the large pH? region

6
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the claimed accuracy of the calculation, due to the product of B̄ ⇥Rs. Indeed in the large pH? region

6

The latter is defined as

B̄s(�B) = B(�B) + V̂
fin

(�B) +

Z
R̂s(�B,�r)d�r . (2)

In this formula V̂
fin

represents the UV- and IR-regularized virtual contribution. We use the hat to
indicate that an amplitude has been IR-regularized. The partonic subprocesses with the emission
of an additional real parton can be split into two groups: those that are divergent in the limit of
collinear emission, called R

div

, and the ones that are instead regular, R
reg

. We can further subdivide
the squared matrix elements of the divergent subprocesses in two parts:

R
div

= Rs +Rf . (3)

The term Rs contains the collinear singularity of R
div

, while Rf is a finite remainder. Finally, we use
the symbol �s

t for the Sudakov form factor, with t as the shower ordering variable:

�s
t = e�

R
dt0
t0

Rs

B
d�r✓(t0�t) . (4)

The splitting of R
div

in eq. (3) is defined up to a finite part which can be reabsorbed in Rs. In the
literature two di↵erent choices have been adopted: in POWHEG Rs = R

div

, while in MC@NLO Rs / ↵sPijB
is proportional to the product of the Born matrix elements times the relevant Altarelli-Parisi splitting
functions.

It is interesting to observe that di↵erent definitions for Rs generate higher-order e↵ects in the
matched di↵erential cross section. The possibility of defining the finite part Rf in an arbitrary way
can be exploited to parameterize the uncertainties related to the matching procedure.

2.2.1 The role of the damping factor Dh in the POWHEG-BOX framework

In the POWHEG-BOX framework, the separation between Rs and Rf can be achieved in a dynamical way
using the damping factor Dh, defined as

Dh =
h2

h2 + (pH? )2
. (5)

The divergent and the regular part of R
div

= Rs +Rf are then defined as:

Rs = Dh R
div

, Rf = (1�Dh) R
div

. (6)

The role of the scale h is to separate the low and the high transverse-momentum regions and it
therefore specifies the range of momenta for which the Sudakov form factor is possibly di↵erent from
1. In the limit pH? ⌧ h we obtain Rs ! R

div

and Rf ! 0. In this limit the Higgs pH? distribution
is suppressed by the Sudakov form factor. On the other hand, when pH? � h we have Rs ! 0 and
Rf ! R

div

and the Sudakov form factor tends to 1. In this latter regime the emission of a real parton
is described at fixed order by the matrix elements Rf = R

div

.
The di↵erential distribution generated according to eq. (1) contains higher order terms, beyond

the claimed accuracy of the calculation, due to the product of B̄ ⇥Rs. Indeed in the large pH? region

6

Example: Higgs Production

exponentiated not exponentiated

No Damping
Pure NLO
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(Multi-Leg Merging at NLO)

32

๏Currently, much activity on how to combine several NLO matrix 
elements for the same process: NLO for X, X+1, X+2, …  

•Unitarity is a common main ingredient for all of them 
•Most also employ slicing (separating phase space into regions 
defined by one particular underlying process) 

๏Methods 
•UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:1211.7278
•MiNLO, based on POWHEG: Hamilton, Nason, Zanderighi (+more)  
•FxFx, based on MC@NLO: Frederix & Frixione, arXiv:1209.6215
•(VINCIA, based on NLO MECs): Hartgring, Laenen, Skands, arXiv:1303.4974  

๏Most (all?) of these will also allow for reaching NNLO accuracy on 
the total inclusive cross section 

•Will soon define the state-of-the-art for SM processes 
•For BSM, the state-of-the-art is generally one order less than SM

M o n a s h  U n i v e r s i t y

•arXiv:1206.3572, 
•arXiv:1512.02663

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1512.02663
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Summary

33

๏This Lecture: 
•From Unitarity to Evolution Equations 
•Parton Showers; the Sudakov no-emission probability 
•Interference and Coherence 
•Colour Flow  
•Ambiguities in Parton Showers ↔ Uncertainties 

•Matching & Merging 
๏Matrix-Element Corrections: PYTHIA, POWHEG, VINCIA 
๏Slicing: CKKW-L (SHERPA + others), MLM (ALPGEN + others) 
๏Subtraction (MC@NLO, aMC@NLO + others) 
๏State-of-the-art: Multi-Leg NLO (UNLOPS, MiNLO, FxFx) 

๏Last Lecture (Friday) 
•Lecture 3: Hadronisation + BSM Signals and Backgrounds

M o n a s h  U n i v e r s i t y



Extra Slides



P.  S k a n d s

Simple Monte Carlo Example: Number of AEPSHEP 
students who will get hit by a car this week

Complicated Function: 
Time-dependent  

Traffic density during day, week-days vs 
week-ends 

   (i.e., non-trivial time evolution of system) 

No two students are the same 
Need to compute probability for each 
and sum 

   (simulates having several distinct types of “evolvers”) 

Multiple outcomes: 
Hit → keep walking, or go to hospital? 
Multiple hits = Product of single hits, or 
more complicated?

35
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Monte Carlo Approach

Approximate Traffic 
Simple overestimate:  

highest recorded density  
of most careless drivers,  
driving at highest recorded speed 
…  

Approximate Student 
by most completely reckless and accident-prone student 
(wandering the streets lost in thought after these lectures …)

36

This extreme guess will be the equivalent of our 
simple overestimate from yesterday:
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Off we go… 
Throw random accidents according to:

Density of  
Cars

Hit Generator

37

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

0

@�
nstudX

i=1

Z te

t0
dt

Z

x
dx⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

1

A

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌥̂(x, t)

dN (t)

dt
= �P (t)N (t) = �

Z

x
dx

nstudX

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

Solve the equation:

R = (t0, t)

3

Sum over  
students

Student-Car 
hit rate

Density of 
Student i

Hit rate for  most 
accident-prone 

student

Rush-hour 
density 
of cars

Too 
Difficult

Simple 
Overestimate

R=

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

R = (te-t0)∆x

te : time 
of accident

↵
max

n
stud

⇢cmax

(Also generate trial xe, e.g., uniformly in circle around Puri)
(Also generate trial i; a random student gets hit)
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Accept trial hit (i,x,t) with probability

Hit Generator
Sudakov Form Factor = Number of students

that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

dN (t)

dt
= �P (t)N (t) = �

⇤

x
dx

nstud�

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

⌅
⇤L,max NL + ⇤R,max NR

⇥
⌥cmax

Solve the equation:

R = �(t0, t)

4

Prob(accept) = 

38

→ True number = number of accepted hits 
(note: we didn’t really treat multiple hits … → Markov Chain)

↵
max

n
stud

⇢cmax

Using the following: 
ρc : actual density of cars at location x at time t 

ρi : actual density of student i at location x at time t 
αi : The actual “hit rate” (OK, not really known, but can make one up)
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Summary: How we do Monte Carlo

Take your system 

Generate a “trial”  (event/decay/interaction/… ) 
Not easy to generate random numbers distributed 
according to exactly the right distribution? 

May have complicated dynamics, interactions …  

→ use a simpler “trial” distribution 

39

Flat with some stratification 

Or importance sample with simple 
overestimating function (for which you can 
generate random #s)
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Summary: How we do Monte Carlo

Take your system 

Generate a “trial”  (event/decay/interaction/… )  
Accept trial with probability f(x)/g(x) 

f(x) contains all the complicated dynamics 
g(x) is the simple trial function 

If accept: replace with new system state 

If reject: keep previous system state

And keep going: generate next trial … 

no dependence on g in final 
result - only affects 
convergence rate

40
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Summary: How we do Monte Carlo

Take your system 

Generate a “trial”  (event/decay/interaction/… )  
Accept trial with probability f(x)/g(x) 

f(x) contains all the complicated dynamics 
g(x) is the simple trial function 

If accept: replace with new system state 

If reject: keep previous system state

And keep going: generate next trial … 

no dependence on g in final 
result - only affects 
convergence rate
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Sounds deceptively simple, 
but  … 

with it, you can integrate  
arbitrarily complicated 
functions (in particular 
chains of nested functions),
over arbitrarily 
complicated regions, in 
arbitrarily many 
dimensions … 


