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Z → 3 Jets
The “CMW” factor
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Depending on the value of µPS, a corresponding value of n
F

is chosen, as well as of the QCD

scale ⇤
F

. This is often di↵erent from that for a fixed order calculation. To give a specific

example, matrix elements will typically be renormalized at a scale characteristic of the total

CM energy, i.e., µ2
ME = s an event-independent value, while resummation arguments imply

one best chooses a running scale, such as µPS = p?, for shower applications [34, 35], which

can di↵er per event.

Shifting to a di↵erent scale for ↵
s

of a given flavour number is quite straightforward.

Translating from a shower scale µPS to a matrix-element scale µME amounts to replacing, for

an antenna function
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A further aspect is that shower Monte Carlos normally switch to 4-flavour (3-flavour)

running for scales µ < m
b

(µ < m
c

), matching the ↵
s

value across the thresholds to obtain a

continuous running. For a consistent treatment, such thresholds must be taken into account

when translating ↵
s

from the shower scale to the matrix-element one. At one-loop order

(which is all that is relevant for the NLO expansion), this can be done by inserting an

additional term for each flavour threshold in the region [µPS, µME],
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with mthres the flavour threshold. Physically, eq. (3.51) expresses running with n
F

flavours

all the way from µPS to µME. The correction term, eq. (3.52), expresses that the number of

flavours was e↵ectively lower below each flavour threshold passed on the way. Note that this

can also be used to account for a larger number of flavours in the shower calculation, e.g., at

scales µPS > m
t

, with the sign change of the correction then automatically reflected by the

logarithm.

For coherent parton-shower models, the arguments presented in [35] also motivate a

change to a “Monte Carlo” scheme for ↵
s

, in which ⇤QCD is rescaled, for each n
F

, by the

so-called CMW factor ⇠ 1.5 (with some mild flavour dependence), relative to its MS value.

If the shower model being matched employs this scheme, then a further rescaling of the

renormalization-scale argument, µPS ! µPS/kCMW, should be used in eq. (3.51), with
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for N
C

= 3. The translation of renormalization scale (and scheme) yields then an additional

term to be added to the definition of V3 in eq. (3.32),
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Figure 10: Comparison of the integral jet shapes as measured by ATLAS [47] with the predictions
of the Pythia standalone (left) and AlpGen + Pythia (right) using Perugia 2011, Perugia 2011 radHi
and Perugia 2011 radLo tunes. The comparisons are performed for the jets with |y| < 2.8 and E

T

ranges of 110-160 GeV (top) and 210-260 GeV (bottom).
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Figure 5: Comparison of AlpGen + Pythia (E
T

>20 GeV) jet multiplicity (left) and leading jet
transverse energy (right) distributions in W+jets electron channel events. The samples are gen-
erated using different AlpGen and Pythia parameter settings as follows: for the central sample
labeled as p2011 AlpGen with xlclu set to 0.26 and Perugia 2011 is used, for the samples labeled
as L Alp. " (L Alp. #) the ktfac parameter of the AlpGen generator is varied so that the LQCD
value used by AlpGen generator is increased (decreased) by a factor of 2 with respect to the cen-
tral value. For the samples labeled as L PS ", L Alp. " (L PS #, L Alp. #) ktfac parameter of
AlpGen and the LQCD in the Pythia shower are modified to consistently vary the LQCDin the ME
and PS upwards and downwards by factors of 2.

change only in the ME calculation is due to the interplay between the radiation produced by PS and the250

matching algorithm, as detailed in Section 2.1.251

4 Comparisons with Data252

In this section we demonstrate that the new LQCD-consistent tuning of AlpGen + Pythia introduced in Sec-253

tion 3.1 compares well with recent Tevatron and LHC measurements, and that, with the arrival of improved254

precision measurements, there should be room for further tuning of these predictions.255

4.1 Z/W+jets production256

The figures that follow show comparisons of AlpGen + Pythia Monte Carlo predictions to measurements257

of both Z+jets and W+jets processes from CDF [39, 33, 40] and ATLAS [41]2. These cross-section mea-258

surements are corrected for all known detector effects to particle levelx and compared to Monte Carlo259

2Measurements of these processes at the Tevatron have also been performed by D0 [42, 43, 44].
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