
P e t e r  S k a n d s 
( C E R N  T H )

So l v ing  the  LHC
D I S C O V E R Y  S e m i n a r,  S e p  2 7  2 0 1 2 ,  N B I ,  C o p e n h a g e n

h

|M (0)
H |2

Amplitudes
Showers

Confinement

Elementary
Fields Jets

Hadrons



P.  S k a n d s

July 4th 2012:  “Higgs-
like” stuff at CERN
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Why?

Precision = Clarity, in our vision of the Terascale

Searching towards lower cross sections, the game gets harder 

+ Intense scrutiny (after discovery) requires high precision

Theory task: invest in precision

This talk: a new formalism for highly accurate collider-
physics predictions, and future perspectives

+ huge amount of other 
physics studies:  

# of journal papers:
144 ATLAS, 116 CMS, 51 LHCb, 
27 ALICE

Some of these are already, or will 
ultimately be, theory limited
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How?

Fixed Order Perturbation Theory:
Problem: limited orders 

Parton Showers:
Problem: limited precision

“Matching”: Best of both Worlds?
Problem: stitched together, slow

Markovian Perturbation Theory
→ Infinite orders, high precision, fast
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Accelerated 
Charges

Associated field 
(fluctuations) continues

RadiationRadiation
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The harder they get kicked, the harder the 
fluctations that continue to become strahlung

Bremsstrahlung
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Bremsstrahlung
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Most bremsstrahlung is 
emitted by particles that are 
almost on shell 

Divergent propagators → 
Bad fixed-order convergence 
(would need very high orders to get 
reliable answer) 

+ Would be infinitely slow 
to carry out separate phase-
space integrations for N, N+1, 
N+2, etc …
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Jets = Fractals
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Gauge amplitudes factorize 
in singular limits (→ universal 
“conformal” or “fractal” structure)

i

j

k

a

b

Partons ab 
→ collinear:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = Altarelli-Parisi splitting kernels, with z = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j 
→ soft:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “antenna” 

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
→ nested factorizations 

Most bremsstrahlung is 
driven by Divergent 
propagators → simple structure

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Divide and Conquer
Factorization → Split the problem into many (nested) pieces
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Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays: 
Use (N)LO matrix elements
→ Sets “hard” resolution scale for process: QMAX

ISR & FSR (Initial & Final-State Radiation): 
Altarelli-Parisi equations → differential evolution, dP/dQ2, as 
function of resolution scale; run from QMAX to ~ 1 GeV (More later) 

MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
→ Additional (soft) “Underlying-Event” activity (Not the topic for today)

Hadronization
Non-perturbative model of color-singlet parton systems → hadrons

+ Quantum mechanics → Probabilities → Random Numbers
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 Realized by Event evolution in Q = fractal scale (virtuality, pT, formation time, …) 

Resolution scale
t = ln(Q2)

Probability to remain 
“unbranched” from t0 to t
→ The “Sudakov Factor”

= Approximation to Real Emissions

= Approximation to Loop Corrections

NF (t)

NF (t0)
= �F (t0, t) = exp

✓
�
Z

d�F+1

d�F

◆

dNF (t)

dt
= �d�F+1

d�F
NF (t)
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Last Ingredient: Loops

P. Skands Introduction to QCD

F @ LO⇥LL(unitary)
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Figure 20: Coefficients of the perturbative series covered by LO + LL calculations, impos-
ing unitarity order by order for each n = k + `. Green (darker) shading represents the full
perturbative coefficient at the respective k and `. Yellow (lighter) shading represents an LL
approximation to it.

calculation, the constraint of unitarity must also be explicitly imposed, which furnishes an
approximation to all-orders loop corrections as well. Let us therefore emphasize that figure 19
is included for pedagogical purposes only; all resummation calculations, whether analytical
or parton-shower based, include virtual corrections as well and consequently yield finite total
cross sections, as will now be described.

3.2.2 Step Two: Infinite Loops

Order-by-order unitarity, such as used in the KLN theorem, implies that the singularities caused
by integration over unresolved radiation in the tree-level matrix elements must be canceled,
order by order, by equal but opposite-sign singularities in the virtual corrections at the same
order. That is, from equation (52), we immediately know that the 1-loop correction to d�F

must contain a term,

2Re[M(0)
F M(1)⇤

F ] � �g2s NC

���M(0)
F

���
2

Z
dsij dsjk

16⇡2sijk

✓
2sik

sijsjk
+ less singular terms

◆
, (56)

that cancels the divergence coming from equation (52) itself. Further, since this is universally
true, we may apply equation (56) again to get an approximation to the corrections generated
by equation (52) at the next order and so on. By adding such terms explicitly, order by order,
we may now bootstrap our way around the entire perturbative series, using equation (52) to
move horizontally and equation (56) to move along diagonals of constant n = k + `. Since
real-virtual cancellations are now explicitly restored, we may finally extend the integrations
over all of phase space, resulting in the picture shown in figure 20.

The picture shown in figure 20, not the one in figure 19, corresponds to what is actually
done in resummation calculations, both of the analytic and parton-shower types17. Physically,
there is a significant and intuitive meaning to the imposition of unitarity, as follows.

Take a jet algorithm, with some measure of jet resolution, Q, and apply it to an arbitrary
sample of events, say dijets. At a very crude resolution scale, corresponding to a high value

17In the way these calculations are formulated in practice, they in fact rely on one additional property, called
exponentiation, that allows us to move along straight vertical lines in the loops-and-legs diagrams. However, since
the two different directions furnished by equations (52) and (56) are already sufficient to move freely in the full
2D coefficient space, we shall use exponentiation without extensively justifying it here.

— 38 —

=

→ Virtual (loop) correction:

Loop = - Int(Tree) + F
Neglect F → Leading-Logarithmic (LL) 

Approximation

Kinoshita-Lee-Nauenberg:

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level must 
be equal and opposite to tree level

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Bootstrapped Perturbation Theory

9

→ All Orders (resummed)
Born

+ Shower

Unitarity

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Exponentiation

But ≠ full QCD! Only LL Approximation.
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→ Jack of All Orders, Master of None?

Good Algorithm(s) → Dominant all-orders structures

But what about all these unphysical choices?
Renormalization Scales (for each power of αs)

The choice of shower evolution “time” ~ Factorization Scale(s)

The radiation/antenna/splitting functions (finite terms arbitrary)

The phase space map (“recoils”, dΦn+1/dΦn )

The infrared cutoff contour (hadronization cutoff)
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1. Systematic Variations
→ Comprehensive Theory 
Uncertainty Estimates

Nature does not depend on them → vary to estimate uncertainties
Problem: existing approaches vary only one or two of these choices

2. Higher-Order Corrections 
→ Systematic Reduction of 
Uncertainties
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Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003
Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Virtual Numerical Collider with 
Interleaved Antennae

Written as a Plug-in to PYTHIA 8
C++ (~20,000 lines)

Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons)

Resolution Time
Infinite family of continuously deformable QE
Special cases: transverse momentum, invariant mass, energy
+ Improvements for hard 2→4: “smooth ordering”

Radiation functions
Written as Laurent-series with arbitrary coefficients, anti 
Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX 
+ Massive antenna functions for massive fermions (c,b,t)

Kinematics maps
Formalism derived for infinitely deformable κ3→2

Special cases: ARIADNE, Kosower, + massive generalizations
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,
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To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,
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The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.
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vincia.hepforge.org

http://vincia.hepforge.org
http://vincia.hepforge.org
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Changing Paradigm
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Ask:

Is it possible to use the all-orders structure that the shower so 
nicely generates for us, as a substrate, a stratification, on top of 
which fixed-order amplitudes could be interpreted as corrections, 
which would be finite everywhere?

Answer:

Used to be no. 

(Though first order worked out in the eighties (Sjöstrand), 
expansions rapidly became too complicated)

For multileg amplitudes, people then resorted to slicing up phase 
space (fixed-order amplitude goes here, shower goes there), 
generated many different cookbook recipes and much bookkeeping
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Idea: 
Start from quasi-conformal all-orders structure (approximate)
Impose exact higher orders as finite corrections 
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events → can be hadronized

Problems: 
Traditional parton showers are history-dependent (non-Markovian)
→ Number of generated terms grows like 2N N!
+ Highly complicated expansions

Solution: (MC)2 : Monte-Carlo Markov Chain
Markovian Antenna Showers (VINCIA)
→ Number of generated terms grows like N
+ extremely simple expansions

Solut ion: (MC)2

13

Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003
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New: Markovian pQCD*
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Legs
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s
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Generate “shower” emission
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Unitarity of Shower
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The VINCIA Code 

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

Cutting Edge: 
Embedding virtual amplitudes

= Next Perturbative Order
→ Precision Monte Carlos

PYTHIA 8

+

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

*)pQCD : perturbative QCD

Start at Born level

R
ep

ea
t
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Hel ic i t ies

Traditional parton showers use the standard Altarelli-Parisi 
kernels, P(z) = helicity sums/averages over:

15

Larkoski, Peskin, PRD 81 (2010) 054010 
+ Ongoing, with A. Larkoski (MIT) & J. Lopez-Villarejo (CERN)

++ �+ +� ��
g+ ! gg : 1/z(1� z) (1� z)3/z z3/(1� z) 0
g+ ! qq̄ : - (1� z)2 z2 -
q+ ! qg : 1/(1� z) - z2/(1� z) -
q+ ! gq : 1/z (1� z)2/z - -

Table 1: Helicity-dependent Altarelli-Parisi splitting functions P (z) for splittings a ! bc, with z defined as
the energy fraction taken by parton b. The labels in the top row denote the helicities of the two final particles in
the order they appear: (hb, hc). The empty columns are forbidden by quark chiral symmetry. By the P and C
invariance of QCD, the same expressions apply after exchanging � $ + or q $ q̄.

The VINCIA Monte Carlo is a dipole-antenna shower [13] based on nested 2 ! 3 splitting
processes. This splitting can be represented as IK ! ijk, for initial partons I , K and final partons i,
j, k. As VINCIA works in the color-ordered limit of QCD, the initial and final partons are assumed
to be in color order, as well. We will also assume that all partons are massless, unless otherwise
specified. The phase space for emission is defined by the dimensionless variables yij and yjk where

yij =
2pi · pj

s
, yij =

2pj · pk
s

, (2)

and s ⌘ (pi + pj + pk)
2
= (pI + pK)

2 is the invariant mass of the dipole antenna system. The phase
space of the emission is defined by the triangle yij , yjk � 0, yij + yjk  1.

The probability of emission is governed by the antenna function which is a function of all relevant
momenta, quantum numbers and the formulation of the shower. For the splitting IK ! ijk, the
antenna function can be expressed in the form

a
type(order)
j/IK (pi, pj , pk) , (3)

where type refers to global or sector antennae and order is the order in ↵s to which the antennae
are computed. When obvious from context, the superscripts will be omitted. In this paper, we will
consider exclusively the lowest order antenna functions and so we can define the color- and coupling-
stripped antenna

aj/IK(pi, pj , pk) = g2sCj/IK āj/IK(pi, pj , pk) . (4)

For simplicity, we will work with the color- and coupling-stripped antenna in the following. For
massless partons, āj/IK(pi, pj , pk) is a function of the kinematic invariants yij and yjk only.

The unpolarized global and sector antennae used in VINCIA were defined in [7, 9, 13]. We wish
to extend the global and sector antennae to include full helicity dependence of all partons in the an-
tenna. Our discussion will only include antennae in which all particles are massless. Antenna splitting
functions including helicity dependence were defined in [10] as ratios of matrix elements, but here,
we will present a general treatment of the form of the antennae. There are many constraints that must
be imposed on the antennae to determine the singular terms; most importantly, the helicity-dependent
antenna functions must appropriately reproduce the helicity-dependent Altarelli-Parisi splitting func-
tions in the collinear limits. Note that this only constrains the singular terms of the antenna; the non-
singular terms are unconstrained and can be interpreted as uncertainties in higher log-order terms.
Also, when summed over final parton helicities, the antenna functions should reproduce the unpo-
larized antennae functions, up to terms that are non-singular. In the following subsections, we will
discuss the construction of global and sector helicity-dependent antennae.

Generalize these objects to dipole-antennae

MHV

NMHV

P-wave

P-wave
→ Can match to individual helicity 

amplitudes rather than helicity sum
→ Fast! (gets rid of another factor 2N)

→ Can trace helicities through shower

→ Eliminates contribution from 
unphysical helicity configurations

P(z)

a

b c
1-z

z

a→bc

E.g.,⇥ 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1
yjk(1�yij)

1
yij(1�yjk)

1 yij yjk

qq̄ ! qgq̄
++ ! +++ 1 0 0 0 0 0 0 0 0 0 0 0
++ ! +�+ 1 -2 -2 1 1 0 0 0 0 2 0 0
+� ! ++� 1 0 -2 0 1 0 0 0 0 0 0 0
+� ! +�� 1 -2 0 1 0 0 0 0 0 0 0 0
qg ! qgg
++ ! +++ 1 0 0 0 0 0 0 1 0 0 0 0
++ ! +�+ 1 -2 -3 1 3 0 -1 0 0 3 0 0
++ ! ++� 0 0 -1 0 -1 0 -1 1 0 0 0 0
+� ! ++� 1 0 -3 0 3 0 -1 0 0 0 0 0
+� ! +�� 1 -2 0 1 0 0 0 1 0 0 0 0
+� ! +�+ 0 0 -1 0 -1 0 -1 1 0 0 0 0
gg ! ggg
++ ! +++ 1 0 0 0 0 0 0 1 1 0 0 0
++ ! +�+ 1 -3 -3 3 3 -1 -1 0 0 3 1 1
++ ! ++� 0 0 -1 0 -1 0 -1 1 0 0 0 0
++ ! �++ 0 -1 0 -1 0 -1 0 0 1 0 0 0
+� ! ++� 1 0 -3 0 3 0 -1 0 1 0 0 0
+� ! +�� 1 -3 0 3 0 -1 0 1 0 0 0 0
+� ! +�+ 0 0 -1 0 -1 0 -1 1 0 0 0 0
+� ! �+� 0 -1 0 -1 0 -1 0 0 1 0 0 0
qg ! qq̄0q0

++ ! ++� 0 0 0 0 0 0 1 0 0 0 0 0
++ ! +�+ 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! ++� 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! +�� 0 0 0 0 0 0 1 0 0 0 0 0
gg ! gq̄q
++ ! ++� 0 0 0 0 0 0 1 0 0 0 0 0
++ ! +�+ 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! ++� 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! +�+ 0 0 0 0 0 0 1 0 0 0 0 0

Table 4: Table of coefficients for helicity-dependent sector antenna functions. By the C and P invariance of
QCD, the same expressions apply with + $ �, q $ q̄. All other antennae are zero. These are the default
assignments in VINCIA. The finite terms are chosen so that the antennae are positive on all of final state phase
space.
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Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,

g2
s

2C
F

A
g/qq̄

=

|M0
1 |2

|M0
0 |2

. (48)

The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes

|M0
0 |2 �(s, 0) = |M0

0 |2
✓
1�

Z
s

0
d�ant g

2
s

2C
F

A
g/qq̄

+O(↵2
s

)

◆
, (49)

which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is

|M0
0 |2 + 2Re[M0

0M
1
0
⇤
] = |M0

0 |2
✓
1 +

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

◆
, (50)

where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

=

↵
s

2⇡
2C

F

�
2I

qq̄

(✏, µ2/m2
Z

)� 4

�
, (51)

with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]

Z
s

0
d�ant 2C

F

g2
s

A
g/qq̄

=

↵
s

2⇡
2C

F

✓
�2I

qq̄

(✏, µ2/m2
Z

) +

19

4

◆
, (52)

and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then

|M0
0 |2 + 2Re[M0

0M
1
0
⇤
] = |M0

0 |2
 
1 +

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

+

Z
Q

2

had

0
d�ant g

2
s

C A
g/qq̄

!
, (53)
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,

g2
s

2C
F

A
g/qq̄

=

|M0
1 |2

|M0
0 |2

. (48)

The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes

|M0
0 |2 �(s, 0) = |M0

0 |2
✓
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Z
s

0
d�ant g

2
s
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A
g/qq̄
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)
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, (49)

which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is

|M0
0 |2 + 2Re[M0

0M
1
0
⇤
] = |M0

0 |2
✓
1 +

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

◆
, (50)

where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is

2Re[M0
0M

1
0
⇤
]

|M0
0 |2

=

↵
s

2⇡
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F
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qq̄

(✏, µ2/m2
Z

)� 4
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, (51)

with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
s

/⇡ ⇥ |M0
0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order

side is then

|M0
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(MC)2: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

with Q the resolution scale of whatever (IR safe5) algorithm is used to define the jets.

3.2.1 Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level matrix element,

Approximate ! |M0
0 |2 , (42)

where the subscript indicates the parton multiplicity beyond Born level (i.e., zero indicates the Born
level) and the superscript indicates the loop order beyond the Born level (i.e., zero indicates the Born
loop order). Since cancellation of real and virtual corrections is exact in both the unmatched shower as
well as in the tree-level matching scheme described above, there are no further corrections to consider
for the inclusive rate. I.e., the total integrated cross section produced by the shower is obtained merely
by integrating eq. (42) over all of the Born-level phase space (or by integrating it over a restricted range
if phase-space cuts are imposed). We now seek a correction term, V0, such that

Matched ! (1 + V0) |M0
0 |2 (43)

gives the correct inclusive NLO rate. From eq. (40), we know that the correction term for Z decay is

V0 =

↵
s

⇡
. (44)

We now turn to the prescription for systematically deriving the corresponding term for any process.
On the fixed-order side, the inclusive cross section at NLO, differentially in the Born-level phase

space, is given by an expression of the form

Exact ! |M0
0 |2 + 2Re[M0

0M
1
0
⇤
] +

Z
d�1

d�0
|M0

1 |2 , (45)

where the integral in the last term runs over clusterings of the additional parton back to the Born level.
At the inclusive level, the fully differential Born-level cross section is therefore only well-defined in the
context of a specific prescription for which bins in the Born-level phase space are populated by each
(Born+1)-parton phase-space point. Although a natural such relation is furnished by the “inverse” of
the shower algorithm, a simpler path is obtained by instead considering the cross section at the exclusive
level.

3.2.2 Exclusive Born

The shower expression for the exclusive Z ! qq̄ rate (defined at the hadronization cutoff, which is the
lowest meaningful resolution scale in the perturbative shower) is

|M0
0 |2 �(s,Q2

had) = |M0
0 |2
 
1�

Z
s

Q

2

had

d�ant g
2
s

C A
g/qq̄

+O(↵2
s

)

!
, (46)

5We use infrared (IR) safety to refer to the combination of soft and collinear safety.
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NLO Correction: Subtract and correct by difference

where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
g/qq̄

= 2C
F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
becomes
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
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0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
As a cross-check, we now repeat the derivation, reinstating the hadronization scale. The fixed-order
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where we have expanded the Sudakov factor � to first order. Due to the presence of the hadronization
scale, this expression is IR finite and can be defined in 4 dimensions. The color factor for qq̄ ! qgq̄ is

C
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F

, (47)

and we assume that the antenna function, A, is either the one derived from Z decay [3] or has been
matched to it, using LO matching. That is,
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The matching equations can also be derived in the limit Qhad ! 0, in which case the expression
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which can only be defined in the presence of an IR regularization scheme. We shall here use dimensional
regularization, working in d = 4 � ✏ dimensions. For completeness, we shall derive the matching
equations first in d and then in 4 dimensions. We stress that the same final matching factors are obtained
in both cases.

Conceptually, the cleanest deriviation is obtained in the d-dimensional case. At NLO, the exclusive
Z ! qq̄ rate at “infinite” perturbative resolution is
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where we have written the right-hand side in a form similar to eq. (49) — and again, this expression
is defined in d dimensions. Since the resolution scale has been taken to zero, there are no unresolved
3-parton configurations to include. The virtual matrix element is
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with the function I
qq̄

used to classify the ✏ divergences [11, 12, 35]. Note that we have modified the
definition of I to make it explicitly dimensionless, see appendix A. On the shower side, the integral of
the Z ! qgq̄ antenna in eq. (49) is [12]
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and, not surprisingly, the difference comes out to be exactly ↵
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0 |2. Writing this correction as a

multiplicative K-factor, we get eq. (40).
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Figure 6: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet cross
section, eq. (55).

Sudakov and matrix-element expressions, hence from now on we replace 2C
F

in the above expression
by C
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The 3-parton Sudakov factor, �3, imposes exclusivity and is given by
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where the index j runs over the qg and gq̄ antennae, each of which contains two terms, for gluon emission
and gluon splitting, respectively. We have implicitly assumed smooth ordering here, which implies that
the upper boundaries on the integrals are given by the respective dipole invariant masses (squared), s

j

.
Note also that we must take into account all modifications that are applied to the LL antenna functions,
including Pimp, PAri, and LO matrix-element matching factors. (We do not write out these factors here,
to avoid clutter.) I.e., the antenna functions appearing in the above expression must be the ones that
are actually generated by the shower algorithm, including in particular the effect of any modifications
imposed by vetos.

For strong ordering, there are no Pimp factors, and the upper integral boundary is instead min(Q2
1, sj),

�3(Q
2
1, Q

2
had) = 1�

2X

j=1

Z min(Q2

1

,s

j

)

Q

2

had

d�ant g
2
s

�
C
A

A
g/qg

+ 2T
R

A
q̄/qg

�
+O(↵2

s

) . (59)

However, since strong ordering is not able to fill the entire 4-parton phase space [?,?], full NLO matching
can only be obtained for the smoothly ordered variant. It is nonetheless interesting to examine both types
of shower algorithms, since even in the strongly ordered case, we may compare the Sudakov logarithms
arising at O(↵2

s

) to those present in the fixed-order calculation.
On the fixed-order side, the expression for the 3-parton exclusive rate is simply
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where the integral that has been added corresponds to unresolved 3-parton configurations, with A again
given by eq. (48). Though eq. (46) is now defined entirely in 4 dimensions, we still need dimensional
regularization to regulate the two last terms in the fixed-order expression. In principle, the integral in
the last term could be carried out explicitly, but it is simpler to rewrite it as
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where the first term is just the full antenna integral, which was given in eq. (52), and the second term is
identical to the one appearing in eq. (46), with which it cancels completely, cf. the definition of the tree-
level matching, eq. (48). The final correction term derived by this procedure is therefore again exactly
equal to ↵

s

/⇡ ⇥ |M0
0 |2.

Note that the scale and scheme dependence of the ↵
s

/⇡ correction is not specified since its ambiguity
is formally of order ↵2

s

. For definiteness we take the renormalization scale for this correction to be
proportional to the invariant mass of the system, µ

R

= kinc
µ

p
ŝ (so that µ

R

= kinc
µ

m
Z

at the Z pole),
with kinc

µ

thus representing the free parameter that governs the choice of renormalization scale for the
total inclusive rate for Z ! hadrons. We shall consider both one-loop and two-loop running options.
The value of ↵

s

(m
Z

) will be determined from LEP data in section ??.

3.3 One-Loop Matching for Born + 1 Parton

sPS: Emphasize choice between full and partial unitarity, similarly to at LO level? We choose to stick
to full unitarity, at least for the time being.

The approximation to the 3-parton exclusive rate produced by a shower matched to (at least) NLO
for the 2-parton inclusive rate and to LO for the 3-parton one, is

Approximate ! (1 + V0) |M0
1 |2 �2(m

2
Z

, Q2
1) �3(Q

2
R1, Q

2
had) , (55)

where M0
1 is the tree-level Z ! qgq̄ matrix element and Q

R1 denotes the “restart scale”. For strong
ordering, Q

R1 is equal to Q1, while, for smooth ordering, it is given by the nested antenna phase spaces.
The subscripts on the two Sudakov factors �2 and �3 make it explicit that they refer to the event as a
whole, see the illustration in fig. 6. Again, we have the choice whether we wish to work in 4 dimensions,
with a non-zero hadronization scale, Qhad, or in d dimensions with the hadronization scale taken to zero.
For correctness, we have maintained the hadronization scale in eq. (55), though we shall see below that
the dependence on it does indeed cancel in the final result.

The 2-parton Sudakov factor, �2, is generated by the (matched) evolution from 2 to 3 partons,

�2(m
2
Z

, Q2
1) = 1�

Z
m

2

Z

Q

2

1

d�ant g
2
s

2C
F

A
g/qq̄

+O(↵2
s

) , (56)

with A
g/qq̄

again defined by eq. (48) (we have added explicit subscripts now to differentiate it from the
qg and gq̄ antenna functions that will presently be introduced). Notice that the integral only runs from
the starting scale, m2

Z

, to the 3-parton resolution scale, Q2
1, hence this integral is IR finite, though it does

contain logarithms. In the remainder of this paper, we shall work only with the leading-color part of the
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Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at Q = Qhad
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Figure 6: Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet cross
section, eq. (55).

Sudakov and matrix-element expressions, hence from now on we replace 2C
F

in the above expression
by C

A

,

�

LC
2 (m2

Z

, Q2
1) = 1�

Z
m

2
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1

d�ant g
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A
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) . (57)

The 3-parton Sudakov factor, �3, imposes exclusivity and is given by

�3(m
2
Z

, Q2
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) , (58)

where the index j runs over the qg and gq̄ antennae, each of which contains two terms, for gluon emission
and gluon splitting, respectively. We have implicitly assumed smooth ordering here, which implies that
the upper boundaries on the integrals are given by the respective dipole invariant masses (squared), s

j

.
Note also that we must take into account all modifications that are applied to the LL antenna functions,
including Pimp, PAri, and LO matrix-element matching factors. (We do not write out these factors here,
to avoid clutter.) I.e., the antenna functions appearing in the above expression must be the ones that
are actually generated by the shower algorithm, including in particular the effect of any modifications
imposed by vetos.

For strong ordering, there are no Pimp factors, and the upper integral boundary is instead min(Q2
1, sj),

�3(Q
2
1, Q

2
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2X
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�
+O(↵2
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) . (59)

However, since strong ordering is not able to fill the entire 4-parton phase space [?,?], full NLO matching
can only be obtained for the smoothly ordered variant. It is nonetheless interesting to examine both types
of shower algorithms, since even in the strongly ordered case, we may compare the Sudakov logarithms
arising at O(↵2

s

) to those present in the fixed-order calculation.
On the fixed-order side, the expression for the 3-parton exclusive rate is simply

Exact ! |M0
1 |2 + 2Re[M0

1M
1⇤
1 ] +

Z
Q

2

had

0

d�2

d�1
|M0

2 |2 , (60)
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Loop Corrections
NLO Correction: Subtract and correct by difference
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Ongoing work, with E. Laenen & L. Hartgring (NIKHEF)

for Z ! 3 Jets,
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, (72)

where:

• the first line contains the full (leading-colour) one-loop matrix element, the V0Z correction from
one-loop matching at the preceding order, and the V1µ term from the choice of shower renormal-
ization scale;

• the second line contains the standardized subtraction term arising from the qg ! qgg and gq̄ !
ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg ! qq̄0q0 and gq̄ !
¯q0q0q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the (matched) shower
evolution and the standardized subtraction terms, including the consequences of ordering choices
and modification factors such as those arising from the Ariadne factor and from matching to the
LO matrix elements.

In section 4, we compute the analytical integrals corresponding to each of the shower-generated terms,
for different choices of evolution variable, ordering criterion, and antenna functions.

With the one-loop matrix element expressed as in appendix B.2, we may cancel the infrared singu-
larity operators in eq. (72), leaving only explicitly finite remainders (which may still contain logarithms
of resolved scales). Choosing the arbitrary scale µME =

p
s as the renormalization point for the fixed-

order calculation and separating the calculation into two pieces, one proportional to N
C

and another
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(MC)2 : NLO Z → 2 → 3 Jets + Markov Shower
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D.2 GGG antennae with µR = p?
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Figure 8: GGG antenna, µ
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and ↵
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= 0.12, gluon splitting in m
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
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To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij
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(23)
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. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.
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Future Directions

1. Publish 3 papers (~ a couple of months: 
helicities, NLO multileg, ISR)

2. Apply these corrections to a broader class of 
processes, including ISR → LHC phenomenology

3. Automate correction procedure, via 
interfaces to BlackHat, MadLoop, … (for the LO 
corrections, we currently use MadGraph)

4. Recycle formalism to derive unitary all-
orders second-order corrections to antenna 
showers (e.g., the one I just showed could be 
applied to any qq→qgq branching, anywhere in the 
shower) → higher-logarithmic shower resummations
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U n c e r t a i n t i e s

No ca l cu l a t ion  i s  more  prec i se  than  the  re l i ab i l i t y  o f  i t s  uncer ta in ty 
e s t imate  →  a im for  fu l l  a s ses sment  o f  TH uncer ta in t i e s .
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Doing Var iat ions

For each event, can compute probability this event 
would have resulted under alternative conditions

25

Giele, Kosower, Skands, PRD 84 (2011) 054003

6 Uncertainty Bands

A calculation is only as good as the trustworthiness of its uncertainty bands. Traditional methods
for evaluating shower uncertainties range from simple comparisons between different models to more
elaborate variations of salient model parameters within some theoretically or phenomenologically
justified ranges.

The former kind is, at best, indicative, but can also be grossly misleading. As a classic example,
consider two different parton showers with a cutoff at some factorization scale. They would both agree
there are no jets above that scale, even though a matrix-element-based calculation would certainly
produce jets in that phase-space region. Comparisons of the HERWIG − PYTHIA kind are therefore
of little value when pursuing rigorous uncertainty estimates.

Systematic variation of salient model parameters obviously gives a more trustworthy idea of the
overall uncertainty, and can also give information about which particular sources dominate. However,
it requires more careful preparation and more expert input to set up: which parameters to vary, within
what ranges, and how to make sure the variations are done consistently when combining many tools
in a long chain of event generation. It also requires substantially more time and resources: for each
variation, a new set of events must be generated, matched, unweighted, and possibly passed through
detector simulation. Finally, the ability of a single model to span all possible variations is often limited
— similarly to above, you still cannot use a strongly ordered shower to estimate what the uncertainty
associated with the strong-ordering condition itself might be. There is also no way that, for instance,
PYTHIA’s shower model could be varied to obtain an estimate of what an angular-ordered shower
would give.

Here, we propose to combine the flexibility of the VINCIA formalism to take into account different
ordering variables, radiation functions, etc., with a treatment of uncertainties that only involves the
generation of a single event sample, with a time requirement that is not greatly increased compared
to the case without uncertainty variations. We shall also automate the expert input to some extent,
reducing the number of choices the user must make.

The key question to ask is: if we use (matched) parton shower model A to generate a set of
unweighted events, what would the weight of each of those events have been if we had instead used
parton shower model B to generate them? By answering this question, we can essentially use any
parton shower model as a “phase space primer”, provided it is still reasonably physical and that it
does not have any dead zones, and then compute alternative weights for the same events for any other
set of assumptions.

The most trivial part is to note that, if a particular shower model uses αs1a1 as its radiation function
for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2
αs1a1

P1 , (123)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or
scheme) and a2 as its radiation function (e.g., with different finite terms, different partitioning of
shared poles, different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower
would be affected by keeping track of such relative probabilities down along the shower chain; the
Sudakov factors would remain unmodified. Such a procedure would therefore explicitly break the
unitarity that is essential to resummation applications, leading to possibly exponentially different
weights between the sets, which would be hard to interpret7. More intuitively, a big uncertainty

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after
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on a very soft branching happening late in the shower should not be able to significantly change the
entire event weight, jets and all. In the normal shower approach, it is the property of unitarity which
keeps such things from happening; as soon as any correction grows large, its associated Sudakov
factor must necessarily become small soon thereafter, keeping the total size of any correction inside a
unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also
for the uncertainty variations, as follows. For each accepted branching, a number of trial branchings
have usually first been generated and discarded, to eliminate the overcounting done by the trial func-
tion. In VINCIA, we have so far not been particularly careful to optimize the choice of trial function
(see sec. 3.2), and hence we have quite many failed trials. These are relatively cheap to generate, how-
ever, so the code is not significantly slowed by this inefficiency. Moreover, these failed trials actually
turn out to be useful, even essential, in the present context.

Just as eq. (123) expresses the relative probability for a branching to be accepted under two differ-
ent sets of model parameters, 1 and 2, with 1 playing the role of phase-space generator and 2 the role
of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase-space
generator (which corresponds to the settings chosen by the user in VINCIA, including matching, sub-
leading corrections, etc.) is

P1;no = 1− P1 , (124)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1−
αs2a2
αs1a1

P1 . (125)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and
by P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In
order to prevent extreme outliers from substantially degrading the statistical precision of the variation
samples, however, we limit the resulting weight adjustments to at most a factor of 2 per branching in
the code (in either direction). The adjustment of the weights for the failed branchings takes the place
of ‘unfailing’ those which should have succeeded with model 2.

The accuracy of the approach obviously depends on the abundance of failed branchings. If the trial
function is completely exact, and no branching ever fails, then the tree-level problem above will still
occur. However, since VINCIA typically generates significantly higher numbers of failed branchings
than accepted ones, its effective numerical mapping of the changes in the Sudakov factors during the
no-branching evolution periods should be reasonably accurate.

To test whether the uncertainty bands produced in this way really reproduce what the shower
model would have generated with different settings, we show a few distributions in Figs. 17 and 18,
with default VINCIA (thin blue line) plus an uncertainty variation (light blue band) on the left-hand
side, and VINCIA run with the actual settings corresponding to that variation on the right, for variations
of the renormalization scale (Fig. 17) and of the antenna function finite terms (Fig.18). In order to
maximize the result of the variations, all matching is switched off, and hence the uncertainty bands
are rather larger than would be the case for default VINCIA settings. The L3 data (black points) [61]
are included mostly to provide a constant reference across the plots; we postpone the discussion of the

20 such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million,
clearly not a reasonable correction to the total event rate.
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Run calculation 1central + 2Nvariations  =  slow

Another use for simple analytical expansions?

+ Unitarity: also recompute 
no-evolution probabilities

VINCIA:
Central weights = 1

+ N sets of alternative weights = variations (all with <w>=1)

→ For every configuration/event, calculation tells how sure it is

Bonus: events only have to be hadronized & detector-simulated ONCE! 

= fast, automatic

Traditional Approach:



P.  S k a n d s

Quantifying Precision

26

0 0.1 0.2 0.3 0.4

T
1/

N
 d

N
/d

B

-310

-210

-110

1

10 L3 
Vincia

Total Jet Broadening (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.150

0 0.1 0.2 0.3 0.4

R
el

.U
nc

.

0

1

Def Rµ Finite QMatch Ord 2
C1/N

 (udsc)TB
0 0.1 0.2 0.3 0.4

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

0 0.1 0.2 0.3 0.4

T
1/

N
 d

N
/d

B

-310

-210

-110

1

10 L3 
Vincia

Total Jet Broadening (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + MadGraph 4.426 + Pythia 8.150

0 0.1 0.2 0.3 0.4

R
el

.U
nc

.

0

1

Def Rµ Finite QMatch Ord 2
C1/N

 (udsc)TB
0 0.1 0.2 0.3 0.4

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

Jet Broadening = LEP event-shape variable, measures “fatness” of jets

Example of Physical Observable: Before (left) and After (right) Matching
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Matched 
Evolution
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+ Interfaced to PYTHIA

Physics Processes, mainly for e+e- and pp/pp beams
Standard Model: Quarks, gluons, photons, Higgs, W & Z boson(s); + Decays
Supersymmetry + Generic Beyond-the-Standard-Model: N. Desai & P. Skands, arXiv:1109.5852 
+ New gauge forces, More Higgses, Compositeness, 4th Gen, Hidden-Valley, …

(Parton Showers) and Underlying Event
PT-ordered showers & multiple-parton interactions: Sjöstrand & Skands,  Eur.Phys.J. C39 (2005) 129

+ more recent improvements: Corke & Sjöstrand, JHEP 01 (2010) 035; Eur.Phys.J. C69 (2010) 1

Hadronization: Lund String
Org “Lund” (Q-Qbar) string: Andersson,  Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1

+ “Junction” (QRQGQB) strings: Sjöstrand & Skands, Nucl.Phys. B659 (2003) 243; JHEP 0403 (2004) 053

Soft QCD: Minimum-bias, color reconnections, Bose-Einstein, diffraction, … 
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Diffraction: Navin, arXiv:1005.3894

LHC “Perugia” Tunes: Skands, PRD82 (2010) 074018

Topcites Home 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2007 2008 2009 2010

The 100 most highly cited papers during 2010 in the hep-ph archive

1.  PYTHIA 6.4 Physics and Manual
By T. Sjostrand, S. Mrenna, P. Z. Skands
Published in:JHEP 0605:026,2006 (arXiv: hep-ph/0603175) Now → PYTHIA 8: 

Sjöstrand, Mrenna, Skands,  
CPC 178 (2008) 852 

Color Reconnection: Skands & Wicke, EPJC52 (2007) 133

Bose-Einstein: Lönnblad, Sjöstrand, EPJC2 (1998) 165
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Theo ry  ↔  Da ta
Global Comparisons

O v e r  5 0 0  b i l l i o n  s i m u l a t e d  c o l l i s i o n  e v e n t s
6 , 5 0 0  Vo l u n t e e r s

B. Segal, 
P. Skands, 
J. Blomer,
P. Buncic, 

F. Grey, 
A. Haratyunyan, 

A. Karneyeu, 
D. Lombrana-Gonzalez, 

M. Marquina

HERA

SLC

LEP

RHIC

LHC

Tevatron

SPS

ISR

Thousands of measurements

Different energies, acceptance 
regions, and observable defs

Different generators & versions, 
with different setups

LHC@home 2.0
TEST4THEORY

Quite technical
Quite tedious

→
Ask someone else 

everyone

http://lhcathome2.cern.ch/
http://lhcathome2.cern.ch/
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LHC@Home 2.0 - Test4Theory

Idea: ship volunteers a virtual atom smasher                     
(to help do high-energy theory simulations)

Runs when computer is idle. Sleeps when user is working. 

Problem: Lots of different machines, architectures 
→ Use Virtualization (CernVM) 
Provides standardized computing environment (in our case Scientific Linux) 
on any machine: Exact replica of our normal working environment 
Factorization of IT and Science parts: nice!

Infrastructure; Sending Jobs and Retrieving output
Based on BOINC platform for volunteer clouds (but can also use other 
distributed computing resources)
New aspect: virtualization, never previously done for a volunteer cloud

29

http://lhcathome2.cern.ch/test4theory/

(tedious, technical)

http://lhcathome2.cern.ch/test4theory/
http://lhcathome2.cern.ch/test4theory/
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Last 24 Hours: 2853 machines

30

Next Big Project (EU ICT): Citizen Cyberlab (3.4M€), kickoff in November … 

→ Campus 
Clouds?

New 
Users/
Day

May June July Aug Sep

4th July
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Results → mcplots.cern.ch

31

M C P L OT S→ Constraints on non-perturbative model parameters

( To t a l  n u m b e r  o f  p l o t s  ~  5 0 0 , 0 0 0 )



B eyo n d  Pe r t u r b a t i o n  T h e o r y
Better pQCD →  Better non-perturbat ive constraints

Soft QCD & Hadronization: 
    Less perturbat ive ambiguity →  improved c lar i ty

ALICE/RHIC: 
    pp as reference for AA
    Col lect ive (soft)  ef fects in pp



B eyo n d  C o l l i d e r s ?

ISS, March 28, 2012
Aurora and sunrise over Ireland & the UK

Dark-matter annihilation: 
    Photon & part ic le spectra

Cosmic Rays: 
    Extrapolat ions to ul tra-high energies

Other uses for a high-precis ion fragmentat ion model



P.  S k a n d s

Summary
QCD phenomenology is witnessing a rapid evolution:

New efficient formalism to embed higher-order amplitudes within 
shower resummations (VINCIA)

Driven by demand of high precision for LHC environment. 

Non-perturbative QCD is still hard
Lund string model remains best bet, but ~ 30 years old
Lots of input from LHC: min-bias, multiplicities, ID particles, 
correlations, shapes, you name it … (THANK YOU to the experiments!)

New ideas (dualities, hydro, ...) still in their infancy; but there are 
new ideas! (heavy-ion collisions offers complementary testing ground)

“Solving the LHC” is both interesting and rewarding
Key to high precision → max information

34

See also 2012 edition of Review of Particle Physics (PDG), section on “Monte 
Carlo Event Generators”, by P. Nason & PS. 
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Theory and Practice

35

THEORY
Perturbation around zero coupling
Truncate at lowest non-vanishing order

How many gluons (of given 
energy) are there in the proton?

(not calculable perturbatively, 
obtained from fits to data)

H0

Improve by computing quantum 
corrections, order by order

Experiment (ATLAS 2011 + 2012) 
Photon pairs: invariant mass

(in context of search for H0→γγ)

Example: The Higgs diphoton signal
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P. Skands Introduction to QCD
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

enhancements of the type

↵n
s ln

m2n

✓
Q2

F

Q2
k

◆
(36)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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Next-to-Leading Order

(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)
Improve by computing quantum 
corrections, order by order

�NLO = �Born +

Z
d�F+1

���M(0)
F+1

���
2

+

Z
d�F 2Re

h
M(1)

F M(0)⇤
F

i

→ 1/ϵ2 + 1/ϵ + Finite → -1/ϵ2 - 1/ϵ + Finite

P. Skands Introduction to QCD

made up of two dipole “ends”, hence the antenna formalism tends to generate somewhat fewer
terms. At NLO, however, there is no fundamental incompatibility — the antennae we use here
can always be partitioned into two dipole ends, if so desired. (Note: only the antenna method
has been successfully generalized to NNLO [57, 58]. Other NNLO techniques, not covered
here, are sector decomposition, see [59, 60], and the generic formalism for hadroproduction of
colorless states presented in [61].)

At NLO, the idea with subtraction is thus to rewrite the NLO cross section by adding and
subtracting a simple function, d�S , that encapsulates all the IR limits,

�NLO
= �Born

+

Z
d�F+1

⇣
|M(0)

F+1|2 � d�NLO
S

⌘

| {z }
Finite by Universality

+

Z
d�F 2Re[M(1)

F M(0)⇤
F ] +

Z
d�F+1 d�NLO

S

| {z }
Finite by KLN

. (42)

The task now is to construct a suitable form for d�S . A main requirement is that it should be
sufficiently simple that the integral in the last term can be done analytically, in dimensional
regularization, so that the IR poles it generates can be canceled against those from the loop
term.

To build a set of universal terms that parametrize the IR singularities of any amplitude, we
start from the observation that gauge theory amplitudes factorize in the soft limit, as follows:

|MF+1(. . . , i, j, k, . . .)|2 jg!0! g2s NC

 
2sik

sijsjk
� 2m2

i

s2ij
� 2m2

k

s2jk

!
|MF (. . . , i, k, . . .)|2 ,(43)

where parton j is a soft gluon, partons i, j, and k form a chain of color-space index contractions
(we say they are color-connected), gs is the strong coupling, and the terms in parenthesis are
called the soft eikonal factor. We here show it including mass corrections, which appear if i
and k have non-zero rest masses, with the invariants sab then defined as

sab ⌘ 2pa · pb = (pa + pb)
2 � m2

a � m2
b . (44)

The color factor, NC , is valid for the leading-color contribution, regardless of whether the
i and k partons are quarks or gluons. At subleading color, an additional soft-eikonal factor
identical to the one above but with a color factor proportional to �1/NC arises for each qq̄
pair combination. This, e.g., modifies the effective color factor for qq̄ ! qgq̄ from NC to
NC(1� 1/NC) = 2CF , in agreement with the color factor for quarks being CF rather than CA.

Similarly, amplitudes also factorize in the collinear limit (partons i and j parallel, so
sij ! 0), in which the eikonal factor above is replaced by the famous Altarelli-Parisi splitting
kernels [34], which were already mentioned in section 2.2, in the context of PDF evolution.
They are also the basis of conventional parton-shower models, such as those in PYTHIA [62].
We return to parton showers in section 3.2.

Essentially, what antenna functions, CS dipoles, and the like, all do, is to combine the soft
(eikonal) and collinear (Altarelli-Parisi) limits into one universal set of functions that achieve
the correct limiting behavior for both soft and collinear radiation. To give an explicit example,
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The 
Subtraction 

Idea

Universal 
“Subtraction Terms”
(will return to later)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

enhancements of the type

↵n
s ln

m2n

✓
Q2

F

Q2
k

◆
(36)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +

Z

p?>p?min

d�1 2Re[M(1)
1 M(0)⇤

1 ]

= �
(0)
1 (p? > p?min) + �

(0)
2 (p?1 > p?min) + �

(1)
1 (p? > p?min) ,

(39)
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Figure 14: Coefficients of the perturbative series covered by an NNLO calculation. The total
power of ↵s for each coefficient is n = k + `. Green shading represents the full perturbative
coefficient at the respective k and `.

where the restriction to at least one jet having p? > p?min has been illustrated in the right-
hand pane of figure 13 by shading only the upper part of the relevant boxes. In the second
term in equation (39), the notation p?1 is used to denote that the integral runs over the phase
space in which at least one “jet” (which may consist of one or two partons) must be resolved
with respect to p?min. Here, therefore, an explicit dependence on the algorithm used to define
“a jet” enters for the first time. This is discussed in more detail in the 2009 ESHEP lectures by
Salam [49].

To extend the integration to cover also the case of 2 unresolved jets, we must combine the
left- and right-hand parts of figure 13 and add the new coefficient

�
(2)
0 = |M(1)

0 |2 + 2Re[M(2)
0 M(0)⇤

0 ] , (40)

as illustrated by the diagram in figure 14.

2.4 The Subtraction Idea

According to the KLN theorem, the IR singularities coming from integrating over collinear and
soft real-emission configurations should cancel, order by order, by those coming from the IR
divergent loop integrals. This implies that we should be able to rewrite e.g. the NLO cross
section, equation (38), as

�NLO
= �Born

+ Finite

⇢Z
d�F+1 |M(0)

F+1|2
�

+ Finite

⇢Z
d�F 2Re[M(1)

F M(0)⇤
F ]

�
,(41)

with the second and third terms having had their common (but opposite-sign) singularities
canceled out and some explicitly finite quantities remaining.

The first step towards this goal is to classify all IR singularities that could appear in the
amplitudes. We know that the IR limits are universal, so they can be classified using a set of
process-independent functions that only has to be worked out once and for all. A widely used
such set of functions are the Catani-Seymour (CS) dipole ones [50, 51], a method which by
now has even been partially automated [52, 53]. Here, we shall instead use a formalism based
on antennae [54, 55, 56]. The distinction between the two is basically that one antenna is
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HI IK KL

H I K L

Coll(I) Soft(IK)

Parton Shower (DGLAP) aI aI + aK

Coherent Parton Shower (HERWIG [12, 40], PYTHIA6 [11]) ΘIaI ΘIaI +ΘKaK

Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],
VINCIA)

aIK + aHI aIK

Sector Dipole-Antenna (LP [41], VINCIA) ΘIKaIK +ΘHIaHI aIK

Partitioned-Dipole Shower (SK [23], NS [42], DTW [24],
PYTHIA8 [38], SHERPA)

aI,K + aI,H aI,K + aK,I

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity
of the IK pair, respectively, originate in different shower types. (ΘI and ΘK represent angular vetos
with respect to partons I andK , respectively, and ΘIK represents a sector phase-space veto, see text.)

where the gluon radiation function has absorbed a factor of 2 on the r.h.s. of the last line, due to the
normalization choice. We note that, although these expressions look quite different from the dipole
formula, eq. (19), they lead to identical singularities. This was shown in ref. [29] by identifying z as
the Lorentz invariant energy fraction taken by the quark, z = xi/(xi + xk), and adding the radiation
from the antiquark, q̄K → gj q̄k.

Shared Singularities: This examination of the different presentations of singularities brings us to
the issue of “shared singularities”. In traditional parton showers, as we have just seen, the full leading-
log radiation pattern can only be obtained after summing over pairs of partons (which each radiate as
independent monopoles), and care must be taken in the construction of the shower to make this sum
approximately coherent to reproduce the correct singular behavior for soft wide-angle radiation. This
dipole singularity is the simplest case of what we shall generally refer to as a shared — or multipole
— singularity below; radiation whose full singularity structure (in a particular phase-space limit) can
only be recovered after summing over two or more radiators.

A chain of such uniquely labeled and color ordered gluons, which could, e.g., represent a shower
“event record” at a given point during its evolution, is illustrated in fig. 2. Below the schematic drawing
we give an overview of how the full collinear singularity of parton I , and the full soft singularity of
the IK pair, would be obtained for five different kinds of parton shower models, as follows.

In a traditional parton shower, the full collinear singularity of each parton is contained in the
DGLAP splitting kernel, P (z), that generates radiation off that parton. Since no other radiators share
that collinear direction, there is no double counting at the LL level. (The kernel P (z) constitutes
a complete subtraction term for the collinear singularities in real-emission contributions to an NLO
calculation.) However, in this approach, the soft (eikonal) singularity between the IK pair must be
obtained by summing the radiation functions of partons I andK together, and therefore it is essential
in this type of approach that both the radiation functions and the shower phase-space factorization
represent a correct partitioning of the soft region, with no so-called dead or double-counted zones.

In the early eighties it was shown [40] that additional coherence effects can also be taken into
account in this language, albeit approximately, by imposing angular ordering during shower evolu-

9

Traditional vs Coherent vs Global vs Sector vs Dipole
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⇥ 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1 yij yjk

qq̄ ! qgq̄
++ ! +++ 1 0 0 0 0 0 0 0 0 0
++ ! +�+ 1 �2 �2 1 1 0 0 2 0 0
+� ! ++� 1 0 �2 0 1 0 0 0 0 0
+� ! +�� 1 �2 0 1 0 0 0 0 0 0
qg ! qgg
++ ! +++ 1 0 �↵+ 1 0 2↵� 2 0 0 0 0 0
++ ! +�+ 1 �2 �3 1 3 0 �1 3 0 0
+� ! ++� 1 0 �3 0 3 0 �1 0 0 0
+� ! +�� 1 �2 �↵+ 1 1 2↵� 2 0 0 0 0 0
gg ! ggg
++ ! +++ 1 �↵+ 1 �↵+ 1 2↵� 2 2↵� 2 0 0 0 0 0
++ ! +�+ 1 �3 �3 3 3 �1 �1 3 1 1
+� ! ++� 1 �↵+ 1 �3 2↵� 2 3 0 �1 0 0 0
+� ! +�� 1 �3 �↵+ 1 3 2↵� 2 �1 0 0 0 0
qg ! qq̄0q0

++ ! ++� 0 0 0 0 0 0 1
2 0 0 0

++ ! +�+ 0 0 1
2 0 �1 0 1

2 0 0 0
+� ! ++� 0 0 1

2 0 �1 0 1
2 0 0 0

+� ! +�� 0 0 0 0 0 0 1
2 0 0 0

gg ! gq̄q
++ ! ++� 0 0 0 0 0 0 1

2 0 0 0
++ ! +�+ 0 0 1

2 0 �1 0 1
2 0 0 0

+� ! ++� 0 0 1
2 0 �1 0 1

2 0 0 0
+� ! +�+ 0 0 0 0 0 0 1

2 0 0 0

Table 2: Table of coefficients for helicity-dependent global antenna functions. By the C and P invariance
of QCD, the same expressions apply with + $ �, q $ q̄. All other antennae are zero. The parameter ↵
determines the form of the spin-summed global antennae. The default choice in VINCIA is ↵ = 0 which
corresponds to the GGG spin-summed antennae. The finite terms are chosen so that the antennae are positive
on all of final state phase space.
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prescription for the choice of non-singular terms for the sector antennae is to add only the minimal
terms necessary. For antennae whose singular terms are positive on all of phase space, we choose
to set the non-singular terms to 0. For those antennae which require the addition of non-singular
terms for positivity, we choose to add constants where possible and only include higher order terms
in yij and yjk if necessary for simplicity. An example of the construction of sector antennae from its
collinear limits and positivity is given in appendix C and the coefficients of the terms in the sector
antennae are given in tab. 4.

To estimate shower uncertainties due to the ambiguous choice of non-singular terms, we define a
set of MIN and MAX antenna functions, as in the global shower case. The procedure for defining the
sector MIN and MAX antennae is the same as that in the global case. We choose to set the MIN and
MAX antennae for the same helicity configuration to have the same non-singular terms in the sector
case as in the global case.

In the VINCIA code, the sector antennae are derived from the global antennae. Note from tab. 2
and tab. 4 that much of the structure of the sector antennae is captured by the global antennae if ↵ = 1.
To construct a sector antenna, the corresponding global antenna with the same helicity and flavor
structure is evaluated with ↵ = 1 and the missing terms added to recover the full sector antenna. The
precise relationship between the sector (āsct) and global (āgl) antennae for ↵ = 1 for gluon emission
is:

āsct
j/IK(yij , yjk) = ā

gl
j/IK(yij , yjk) + �Ig�HKHk

(
�HIHi�HIHj

 
1 + yjk + y2jk

yij

!

+ �HIHj

 
1

yij(1� yjk)
� 1 + yjk + y2jk

yij

!)

+ �Kg�HIHi

(
�HIHj�HKHk

 
1 + yij + y2ij

yjk

!

+ �HKHj

 
1

yjk(1� yij)
� 1 + yij + y2ij

yjk

!)
.

Here, �Ig is one if I is a gluon and zero otherwise and �HiHj is one if the helicity of particles i and j
are the same and zero otherwise. For antennae with gluons splitting to quarks, the sector antennae are
twice the global antennae.

3 The Shower and Matching Algorithm

PS: Not many changes here. We need to explain how VINCIA has been expanded, with new structures
encapsulating helicity-dependent functions. In the trial-and-veto algorithm itself, not much changes,
but we should of course make clear which trial functions are used for which antennae.

JJ: introduced plot fig. 1

• Trial generation: unchanged (using unpolarized trial functions), for both sector and global,
respectively.

• Find spin-summed physical antenna. Given mother helicities, you sum over daughter helicities.
In sector case, this is the full (three-term) sector antenna, and the accept probability is the full
sector antenna / sum over trial pieces. Use this to determine kinematics (branching invariants +
phase space mapping).
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Figure 4: Illustration of the three phase-space sectors in a color-singlet gigjgk configuration, using transverse
momentum to discriminate between sectors [17].

functions must necessarily reflect this reorganization. The double pole, located at the origin of the
plots in fig. 4, is contained entirely within the IK ! ijk antenna, and can therefore be carried over
from the global case without modification. The single-pole terms, however, change to account for
collinear radiation now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae is modified
and derive a complete set of sector antenna functions. In section 3.2, we compare these functions to
fixed-order matrix elements for Z ! 4, 5, and 6 partons. In section 3.3, we discuss the ambiguities
remaining concerning non-singular (and non-universal) terms. Finally, in section 3.4, we compare
various options for how to partition phase-space into sectors.

3.1 Singularity Structure

In the so-called “planar” (leading-color) limit, which is used to represent color flow in parton-shower
event generators, gluons are viewed as composed of a triplet and an antitriplet color charge, which are
part of two separate color dipoles. For instance, in a qgq̄ configuration, there will be one color dipole
stretched between the qg pair and one stretched between the gq̄ pair. The full collinear singularity of
the gluon is obtained by summing over the two. In the global antenna approach, radiation from both
pairs is allowed to contribute over all of phase-space. In the sector approach, either the qg pair or the
gq̄ one contributes to each qggq̄ phase-space point. In order for the two approaches to reproduce the
same collinear limit, the sector antennae must include those collinear terms that would be generated
by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ ! qgq̄ antenna is the same
for global and sector decompositions, since there are no neighboring antennae in this case. In the
terminology of our conventions,

asct

g/qq̄

= agl

g/qq̄

. (9)

In the qg ! qgg (or gq̄ ! ggq̄) case, there is the collinear limit on the edge of the parent gluon to
be dealt with. In this limit there is a mapping z ! 1 � z between the antenna and its neighboring
antenna. A single global antenna thus compares to the full g ! gg splitting function in the collinear
limit as follows [39],

āgl

g/qg

(p
i

, p
j

, p
k

)

s

jk

!0�! 1

s
jk

✓
P

gg!G

(z)� 2z

1� z
� z(1� z)

◆
+ O(1), (10)
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Figure 4: Illustration of the three phase-space sectors in a color-singlet gigjgk configuration, using transverse
momentum to discriminate between sectors [17].

functions must necessarily reflect this reorganization. The double pole, located at the origin of the
plots in fig. 4, is contained entirely within the IK ! ijk antenna, and can therefore be carried over
from the global case without modification. The single-pole terms, however, change to account for
collinear radiation now being produced by a single antenna rather than two overlapping ones.

In section 3.1, we discuss how the singularity structure of the individual antennae is modified
and derive a complete set of sector antenna functions. In section 3.2, we compare these functions to
fixed-order matrix elements for Z ! 4, 5, and 6 partons. In section 3.3, we discuss the ambiguities
remaining concerning non-singular (and non-universal) terms. Finally, in section 3.4, we compare
various options for how to partition phase-space into sectors.

3.1 Singularity Structure

In the so-called “planar” (leading-color) limit, which is used to represent color flow in parton-shower
event generators, gluons are viewed as composed of a triplet and an antitriplet color charge, which are
part of two separate color dipoles. For instance, in a qgq̄ configuration, there will be one color dipole
stretched between the qg pair and one stretched between the gq̄ pair. The full collinear singularity of
the gluon is obtained by summing over the two. In the global antenna approach, radiation from both
pairs is allowed to contribute over all of phase-space. In the sector approach, either the qg pair or the
gq̄ one contributes to each qggq̄ phase-space point. In order for the two approaches to reproduce the
same collinear limit, the sector antennae must include those collinear terms that would be generated
by their neighbors in the global case.

As our starting point, we take the GGG global antennae [39]. The qq̄ ! qgq̄ antenna is the same
for global and sector decompositions, since there are no neighboring antennae in this case. In the
terminology of our conventions,

asct

g/qq̄

= agl

g/qq̄

. (9)

In the qg ! qgg (or gq̄ ! ggq̄) case, there is the collinear limit on the edge of the parent gluon to
be dealt with. In this limit there is a mapping z ! 1 � z between the antenna and its neighboring
antenna. A single global antenna thus compares to the full g ! gg splitting function in the collinear
limit as follows [39],
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→ P(z) = Sum over two 
neigboring antennaeGlobal

Sector
Only a 

single term 
in each 
phase 

space point

→ Full P(z) 
must be 

contained 
in every 
antenna

Sector = Global + 
additional collinear terms 
(from “neighboring” antenna)
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In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last → 
proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms( ~ +

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

42

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ Sector antennae 
→ 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!

Larkosi, Peskin,Phys.Rev. D81 (2010) 054010
Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Giele, Kosower, Skands, PRD 84 (2011) 054003 
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p� and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z � 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p�, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
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PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ⌅PS p�-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ⌅AR kinematics map.

• ARI: p�-ordering using our best imitation of the what the real ARIADNE program does. It uses
p�-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ⌅AR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including �⇤, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p�-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ⌅PS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z ⇥ 5 and Z ⇥ 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z ⇥ qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ⇥AR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : ⌅ord PLL � ⌅ordPariPLL = ⌅ord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an

36

S M O OT H  M A R KO V

→ A very good all-orders starting point



P.  S k a n d s

Example: Non-Singular Terms

47

Giele, Kosower, Skands, PRD 84 (2011) 054003

Control
(two separate runs)

Automatic
Variation
(one run)

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
Vincia

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

R
el

.U
nc

.

0

1

Finite

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4 1-T (udsc)

0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
a=Max
a=Min

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p� and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of ⇤ = 1� T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p�.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.
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addition, a few other minor points will need to be clarified. Notably, power-correction ambiguities aris-
ing from perturbative differences in the hadronization region (always present in any perturbative calcu-
lation, but important if one wants to retrieve “exactly” the matrix-element answer, for instance for cross-
check purposes), the impact of unordered sequences of radiation that can occur for the smooth-ordering
case (one possibility may be to adopt a strategy similar to the truncated showers of the MC@NLO
approach), and the mutually related issues of total normalization and how much of the (hard) correc-
tions are exponentiated (similar to the differences between the POWHEG and MC@NLO formalisms,
but here occurring at one additional order, where the total normalization that would be relevant is the
NNLO one). Obviously, the extension of the formalism to hadron collisions is also a necessary prereq-
uisite for it to be interesting for LHC phenomenology. We look forward to following up on these issues
in the near future.
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B One-Loop Amplitudes

B.1 Renormalization

Since a detailed derivation of the calculation of Z ! 3 jets can be found in [10] we restrict ourselves
to listing the result in a, for our purpose, convenient form. Divergences are regulated using dimensional
regularization with d = 4 � 2✏. Our results, before ultraviolet renormalization, are cross-checked
with [10] where one must undo the renormalization in their case. Now in order to cancel the ultraviolet
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the collinear coefficient K. In a colour-ordered decomposition, these are

β0 = b0N + b0,F NF with b0 =
11

6
, b0,F = −1

3
(4.21)

and

K = k0N + k0,F NF with k0 =
67

18
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6
, k0,F = −5

9
. (4.22)

5. Quark-antiquark antennae

The quark-antiquark antenna functions are derived by appropriately normalising the colour-

ordered QCD real radiation corrections to γ∗ → qq̄, described to NNLO accuracy in [44].

The overall normalisation is given by defining the tree-level two-parton quark-antiquark

antenna function

A0
2(s12) ≡ 1 . (5.1)

The one-loop two-parton quark-antiquark antenna is then:
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operators. To extract the remaining finite contribution, we introduce

Finite(X ) ≡ X − Poles(X ) .

Generally,

X = Poles(X ) + Finite(X ) + O(ε). (3.1)

The one-loop antenna functions contain explicit poles from the loop integration. There-

fore, the operators Poles and Finite can also be applied to their unintegrated forms X.

The action of these operators is again to decompose the unintegrated antenna in terms of

infrared singularity operators describing the pole terms and a finite remainder.

All antenna functions are derived from physical matrix elements: the quark-antiquark

antenna functions from γ∗ → qq̄ + (partons) [44], the quark-gluon antenna functions from

χ̃ → g̃ + (partons) [46] and the gluon-gluon antenna functions from H → (partons) [47].

The tree-level antenna functions are obtained by normalising the colour-ordered three- and

four-parton tree-level squared matrix elements to the squared matrix element for the basic

two-parton process,

X0
ijk = Sijk,IK

|M0
ijk|2

|M0
IK |2

,

X0
ijl = Sijkl,IL

|M0
ijkl|2

|M0
IL|2

, (3.2)

where S denotes the symmetry factor associated to the antenna, which accounts both for

potential identical particle symmetries and for the presence of more than one antenna

in the basic two-parton process. The one-loop antenna functions are obtained from the

colour-ordered renormalised one-loop three-parton matrix elements as

X1
ijk = Sijk,IK

|M1
ijk|2

|M0
IK |2

− X0
ijk

|M1
IK |2

|M0
IK |2

. (3.3)

The numerical implementation of the three- and four-parton antenna phase space [25]

requires the partonic emissions to be ordered. Ordering of emissions means that the two

hard radiator partons defining the antenna are identified, and that each unresolved par-

ton can become singular only with the two particles which are adjacent to it, i.e. with

the two radiators for three-parton antenna functions and with one radiator and with the

other unresolved parton for the four-parton antenna functions. For the sake of numeri-

cal implementation, this implies two requirements: (1) the separation of multiple antenna

configurations present in a single antenna function for three- and four-parton antenna func-

tions and (2) the separation of non-ordered emissions (present only at subleading colour

in the four-parton antenna functions) into terms that can be identified with a particular

ordering of the momenta.

In the colour-ordered quark-gluon and gluon-gluon antenna functions derived from

physical matrix elements for neutralino decay [46] and Higgs boson decay [47], it is in

general not possible to identify the hard radiators and the unresolved partons in a unique

manner. The reason for this ambiguity is in the cyclic nature of the colour orderings, which

– 25 –

For the analytic integration, we can use (2.8) to rewrite each of the subtraction terms

in the form,

|Mm|2 J (m)
m dΦm

∫
dΦXijk

X0
ijk,

where |Mm|2, J (m)
m and dΦm depend only on p1, , . . . , p̃I , p̃K , . . . , pm+1 and dΦXijk

and X0
ijk

depend only on pi, pj , pk. The analytic integral of the subtraction term is therefore defined

as the antenna function integrated over the fully inclusive antenna phase space, normalised

appropriately,

X 0
ijk(sijk) =

(
8π2 (4π)−ε eεγ

) ∫
dΦXijk

X0
ijk. (2.11)

This integration is performed analytically in d dimensions to make the infrared singu-

larities explicit and added directly to the one-loop m-particle contributions. The factor(
8π2 (4π)−ε eεγ

)
in the above equation is related to the normalisation of the renormalised

coupling constant, and its relation to the bare coupling parameter g =
√

4πα0 appearing

in the QCD Lagrangian density:
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where

Sε = (4π)εe−εγ with Euler constant γ = 0.5772 . . .

and µ2
0 is the mass parameter introduced in dimensional regularisation to maintain a di-

mensionless coupling in the bare QCD Lagrangian density; β0 and β1 are the first two

coefficients of the QCD β-function:

β0 =
11N − 2NF

6
, β1 =

34N3 − 13N2NF + 3NF

12N
, (2.13)

with N = 3 colours and NF massless quark flavours.

2.2 NNLO infrared subtraction terms

At NNLO, the m-jet production is induced by final states containing up to (m+2) partons,

including the one-loop virtual corrections to (m + 1)-parton final states. As at NLO, one

has to introduce subtraction terms for the (m + 1)- and (m + 2)-parton contributions.

Schematically the NNLO m-jet cross section reads,

dσNNLO =

∫

dΦm+2

(
dσR

NNLO − dσS
NNLO

)
+

∫

dΦm+2

dσS
NNLO

+

∫
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NNLO − dσV S,1
NNLO

)
+

∫

dΦm+1

dσV S,1
NNLO

+

∫

dΦm

dσV,2
NNLO , (2.14)

where dσS
NNLO denotes the real radiation subtraction term coinciding with the (m + 2)-

parton tree level cross section dσR
NNLO in all singular limits. Likewise, dσV S,1

NNLO is the

one-loop virtual subtraction term coinciding with the one-loop (m+1)-parton cross section

dσV,1
NNLO in all singular limits. Finally, the two-loop correction to the m-parton cross section

is denoted by dσV,2
NNLO.

– 9 –
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Loop Corrections
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D.3 GGG antennae with µR = mD
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Figure 9: GGG antenna, µ
R

= m
D

and ↵
s

= 0.12 and gluon splitting is m
qq

.
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The choice of evolution variable (Q)
Variation with µR  = mD = 2 min(sij,sjk)

Parameters: αS(MZ) = 0.12, ΛQCD = ΛCMW
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Additional Sources of Particle Production

Hadrons are composite → possibility of Multiple 
Parton-Parton Interactions (+ their showers)

51

Goes beyond standard 
factorization theorems

Builds up the soft 
underlying-event 
activity in hadron 
collisions 

Many recent developments, on factorization, multi-parton PDFs, cross 
sections, interaction models, color flow, etc. But not the topic for today



P.  S k a n d s

Hadronization

• A set of colored partons resolved at a scale of ~ 1 GeV (the 
perturbative cutoff) → set of color-neutral hadronic states.

52

Long Distances:  V(R) ~ κ R
= String Potential

(with tension κ ~ 1 GeV/fm)

q � q̄ potential

➡ Model as 1+1 dimensional (classical) string 
+ breaks via quantum tunneling

)

“Lund Model”



P. Skands

(Color Flow in MC Models)

“Planar Limit”

Equivalent to NC→∞: no color interference*

Rules for color flow:

For an entire cascade:
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Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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Illustrations from: Nason + PS, 
PDG Review on MC Event Generators, 2012

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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String #1 String #2 String #3

Example: Z0 → qq

Coherence of pQCD cascades → not much “overlap” between strings 
→ planar approx pretty good

LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc2 )

*) except as reflected by 
the implementation of 
QCD coherence effects in 
the Monte Carlos via 
angular or dipole ordering



H a d ro n i z a t i o n

Distance  Sca le s  ~  10 -15  m = 1  fe rmi

The problem: 

• Given a set of colored partons resolved at a scale of ~ 1 GeV (the 
perturbative cutoff), need a (physical) mapping to a new set of degrees 
of freedom = color-neutral hadronic states.

MC models do this in three steps

1. Map partons onto continuum of highly excited hadronic states 
(called ‘strings’ or ‘clusters’)

2. Iteratively map strings/clusters onto discrete set of primary hadrons 
(string breaks / cluster splittings / cluster decays)

3. Sequential decays into secondary hadrons (e.g., ρ > π π , Λ0 > n π0, π0 > γγ, ...)



From Partons to Strings

• Motivates a model:

• Separation of transverse and longitudinal degrees of freedom

• Simple description as 1+1 dimensional worldsheet – string – 
with Lorentz invariant formalism

55

Short Distances ~ pQCD Long Distances ~ Linear 
Confinement

Partons Strings (Flux Tubes), Hadrons



The (Lund) String Model

56

Map:

• Quarks > String 
Endpoints

• Gluons > Transverse 
Excitations (kinks)

• Physics then in terms 
of string worldsheet 
evolving in spacetime

• Probability of string 
break constant per 
unit area > AREA 
LAW

Simple space-time picture
Details of string breaks more complicated → tuning
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z

(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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Hadronization
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cuto↵ Q
had

, may be larger than the purely non-perturbative /⇡ above, to account for e↵ects
of additional unresolved soft-gluon radiation below Q

had

. In principle, the magnitude of this
additional component should scale with the cuto↵, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are di�cult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/⇡ and K⇤/⇢ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z
(1� z)a exp

✓
�b (m2

h

+ p2

?h

)

z

◆
, (1.11)

1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.
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String Break

q

leftover string,
further breaks

a) b)

Fig. 20: a) Illustration of string breaking by quark pair creation in the string field. b) Illustration of the algo-
rithmic choice to process the fragmentation from the outside-in, splitting off a single on-shell hadron in each
step.

A straightforward Lorentz-invariant description of this object is provided by the massless relativistic
string in 1+1 dimensions, with no transverse degrees of freedom. The mathematical, one-dimensional
string can be thought of as parameterizing the position of the axis of a cylindrically symmetric flux
tube. (Note that the expression “massless” is somewhat of a misnomer, since  effectively corresponds
to a “mass density” along the string.)

As the q and q̄ move apart, their kinetic energy is gradually converted to potential energy, stored
in the growing string spanned between them. In the “quenched” approximation, in which g ! qq̄ split-
tings are not allowed, this process would continue until the endpoint quarks have lost all their momen-
tum, at which point they would reverse direction and be accelerated by the now shrinking string. In
the real world, quark-antiquark fluctuations inside the string field can make the transition to become
real particles by absorbing energy from the string, thereby screening the original endpoint charges
from each other and breaking the string into two separate colour-singlet pieces, (qq̄)! (qq̄

0
) + (q

0
q̄),

illustrated in figure 20 a. This process then continues until only ordinary hadrons remain. (We will
give more details on the individual string breaks below.) More complicated multi-parton topologies
including gluons are treated by representing gluons as transverse “kinks”. Thus soft gluons effec-
tively “build up” a transverse structure in the originally one-dimensional object, with infinitely soft
ones absorbed into the string without leading to modifications. For strings with finite-energy kinks,
the space-time evolution is then slightly more involved [68], and modifications to the fragmentation
model to handle stepping across gluon corners have to be included, but the main point is that there
are no separate free parameters for gluon jets. Differences with respect to quark fragmentation arise
simply because quarks are only connected to a single string piece, while gluons have one on either
side, increasing the energy loss per unit (invariant) time from a gluon to the string by a factor of 2
relative to quarks, which can be compared to the ratio of colour Casimirs CA/CF = 2.25.

Since the string breaks are causally disconnected (as can easily be realized from space-time
diagrams [68]), they do not have to be considered in any specific time-ordered sequence. In the
Lund model, the string breaks are instead generated starting with the leading hadrons, containing the
endpoint quarks, and iterating inwards towards the centre of the string, alternating randomly between
fragmentation off the left- and right-hand sides, respectively, figure 20b. This has the advantage that a
single on-shell hadron can be split off in each step, making it straightforward to ensure that only states
consistent with the known spectrum of hadron resonances are produced, as will be discussed below.

The details of the individual string breaks are not known from first principles. The Lund model
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One Breakup:

Iterated Sequence:

t
i
m

e

Figure 1.2: Illustration of string breaking by quark pair-creation in the string field.

Consider a color-connected quark-antiquark pair with no intermediate gluons emerging
from the parton shower (like the q̄q pair in the center of fig. 1.1), e.g. a red q and an antired
q̄. As the charges move apart, linear confinement implies that a potential V (r) =  r is
reached for large distances r. (At short distances, there is a Coulomb term / 1/r as well,
but this is neglected in the Lund string.) This potential describes a string with tension
 ⇠ 1 GeV/fm ⇠ 0.2 GeV2. The physical picture is that of a color flux tube being
stretched between the q and the q̄. As the string grows, the non-perturbative creation of
quark-antiquark pairs can break the string, via the process (qq̄) ! (qq̄0) + (q0q̄), illustrated
in figure 1.2. More complicated color-connected quark-antiquark configurations involving
intermediate gluons (like the q̄gggq and q̄gq systems on the left and right part of fig. 1.1)
are treated by representing gluons as transverse “kinks”. Thus soft gluons e↵ectively build
up a transverse structure in the originally one-dimensional object, with infinitely soft ones
smoothly absorbed into the string. For strings with finite-energy kinks, the space-time
evolution is slightly more involved [48], but the main point is that there are no separate
free parameters for gluon jets. Di↵erences with respect to quark fragmentation arise simply
because quarks are only connected to a single string piece, while gluons have one on either
side, increasing their relative energy loss (per unit invariant time) by a factor of 2, similar
to the ratio of color Casimirs C

A

/C
F

= 2.25.
Since the string breaks are causally disconnected (as can be realized from space-time

diagrams [48]), they do not have to be considered in any specific time-ordered sequence. In
the Lund model, the string breaks are generated starting with the leading (“outermost”)
hadrons, containing the endpoint quarks, and iterating inwards towards the center of the
string, alternating randomly between the left and right sides. One can thereby split o↵ a
single on-shell hadron in each step, making it straightforward to ensure that only states
consistent with known hadron states are produced.

For each breakup vertex, quantum mechanical tunneling is assumed to control the masses
and p? kicks that can be produced, leading to a Gaussian suppression

Prob(m2

q

, p2

?q

) / exp

✓�⇡m2

q



◆
exp

✓�⇡p2

?q



◆
, (1.10)

where m
q

is the mass of the produced quark flavor and p? is the non-perturbative transverse
momentum imparted to it by the breakup process (the antiquark has the same mass and
opposite p?), with a universal average value of

⌦
p2

?q

↵
= /⇡ ⇠ (250 MeV)2. The charm

and bottom masses are su�ciently heavy that they are not produced at all in the soft
fragmentation. The transverse direction is defined with respect to the string axis, so the
p? in a frame where the string is moving will be modified by a Lorentz boost. Note that
the e↵ective amount of “non-perturbative” p?, in a Monte Carlo model with a fixed shower

12

Causality
→ 

Lund FF

Area
→ 

Law


