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P. Skands Virtual Colliders

Introduction
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In particle physics: 
Integrate over all quantum histories

Only physical observables are well-defined and meaningful 
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→ Integrate differential cross sections 
over specific phase-space regions

LHC detector
Cosmic-Ray detector

Neutrino detector
X-ray telescope

…

sourceScattering 
Experiments



Why virtual colliders?
The Problem of Measurement

Theory ExperimentFeedback Loop

Hits
Triggers
0100110

Apparatus
B-Field

....

Fields
Interactions
Amplitudes

Partons
Confinement

...

High-Energy Phenomenology From Real World to “Ideal Detector”

Theory: Need predictions for “physical observables” (Bohr would agree)

Experiment: Need simulated events to optimize detectors and measurements

“Monte Carlo Event Generators”

Field Theory and Phenomenological Models

This talk

Detector Unfolding
Particle Interactions with Matter 

(e.g., GEANT, FLUKA, …)
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Hadron Structure and Decays

A huge  var i e ty  o f  phenomena

St i l l  on ly  par t i a l l y  so l ved  …
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+ other physics studies:  

# of journal papers so far:
183 ATLAS, 183 CMS, 67 LHCb,    
36 ALICE, + … 

Some of these studies are 
already theory limited

July 4th 2012:  “Higgs-like” 
stuff at CERN

5

… and of course the Higgs

Precision = Clarity, in our vision of the Terascale

Searching towards lower cross sections, the game gets harder 

+ Intense scrutiny (after discovery) requires high precision

Theory task: invest in precision

This talk: how we (attempt to) solve the LHC, and how we 
plan to get better at it
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How?

Fixed-order perturbative Quantum Field Theory:
Good: full quantum treatment, order by order

Problems: can only really do first few orders; computationally 
slow; converges badly (or not at all) in classical limits

Infinite-order semi-classical approximations
Good: universal; computationally fast; classical correspondence 
is guaranteed

Problems: limited precision; misses interference effects 

“Matching”: Best of both Worlds?
Good: QFT for first few orders + semi-classical for the rest 

Problems: cobbled together; computationally slow; divergences 
→ room for improvement

6
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The Problem of Bremsstrahlung
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Accelerated 
Charges

Associated field 
(fluctuations) continues

RadiationRadiation

The harder they get kicked, the harder the 
fluctations that continue to become strahlung
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Bremsstrahlung

Most bremsstrahlung is 
emitted by particles that are 
almost classical (=on shell) 

Divergent propagators → 
Bad fixed-order 
convergence (would need very 

high orders to get reliable answer) 

Would be infinitely slow to 
carry out separate phase-
space integrations for each 
and every order

8
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Jets  =  F racta l s
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i

j

k

a

b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j 
→ “soft”: |MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton j really emitted by (i,k) “colour 
antenna” 

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
→ nested factorizations 

Most bremsstrahlung is driven by 
divergent propagators → simple 
structure 

Amplitudes factorize in singular 
limits (→ universal “conformal” or 
“fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Divide and Conquer

Factorization → Split the problem into many (nested) pieces

10

+ Quantum mechanics → Probabilities → Random Numbers (Monte Carlo)

Hadronization
Non-perturbative model of transition from coloured partons 
to colour-neutral hadrons (confinement): at QCONFINEMENT 

Pevent = PHard ⌦ PDec ⌦ PBrems ⌦ PHadr ⌦ . . .

Hard Process & Decays: 
Use fixed-order amplitudes
→ Also defines fundamental resolution scale for process: QMAX

Bremsstrahlung:
Semi-classical evolution equations → differential 
perturbative evolution, dP/dQ2, as function of resolution 
scale; run from QMAX to QCONFINEMENT ~ 1 GeV (More later) 
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Bootstrapped Perturbation Theory
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Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (yellow = fractal with scaling violation)
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No. of Bremsstrahlung Emissions
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations
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So combine them!

Jack of All Orders, Master of None?

Nice to have all-orders solution
But it is only exact in the singular (soft & collinear) limits

→ gets the bulk of bremsstrahlung corrections right, but 
fails equally spectacularly: for hard wide-angle radiation: 
visible, extra jets

… which is exactly where fixed-order calculations work!

12

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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http://arxiv.org/abs/arXiv:1207.2389
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The Problem of Matching

First emission: “the HERWIG correction”
Use the fact that the specific HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation

Arbitrary emissions: the “CKKW” prescription

13

P. Skands Introduction to QCD

F @ LO⇥LL-Soft (HERWIG Shower)

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

+

F+1 @ LO⇥LL (HERWIG Corrections)
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F @ LO1⇥LL (HERWIG Matched)
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this

— 46 —

P. Skands Introduction to QCD

F @ LO⇥LL-Soft (excl)

`
(l

oo
ps

)

2 �
(2)
0

. . .

1 �
(1)
0 �

(1)
1

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2

0 1 2
k (legs)

+

F+1 @ LO⇥LL-Soft (excl)

`
(l

oo
ps

)

2 �
(2)
0

. . .

1 �
(1)
0 �

(1)
1

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2

0 1 2
k (legs)

+

F+2 @ LO⇥LL (incl)
`

(l
oo

ps
)

2 �
(2)
0

. . .

1 �
(1)
0 �

(1)
1

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2

0 1 2
k (legs)

=

F @ LO2⇥LL (MLM & (L)-CKKW)

`
(l

oo
ps

)

2 �
(2)
0

. . .

1 �
(1)
0 �

(1)
1

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2

0 1 2
k (legs)

Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events

— 47 —



P. Skands Virtual Colliders

The “CKKW” Prescription

Start from a set of fixed-order calculations

14

�inc
F �inc

F+1(Qcut) �inc
F+2(Qcut)

Separate Phase-Space Integrations

Wish to add showers while eliminating Double Counting: 
Transform inclusive cross sections, for “X or more”, to exclusive ones, for “X and only X”

�exc

F+2

(QF+2

)

Now add a genuine parton shower → remaining evolution down to confinement scale

Start from QF+2Start from Qcut

�exc

F+1

(Q
cut

)

�exc

F+1

(QF+1

)

Jet Algorithm → Recluster back to F → “fake” brems history
Attach shower-like resummation factors to each vertex and internal line

�exc

F (Q
cut

)

Attach shower-like resummation factors on external lines
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

The Cost

15
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Z→n : Number of Matched Emissions

1s

10s

100s

1000s
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Z→n : Number of Matched Emissions

1. Initialization time
(to pre-compute cross sections and 

warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events
(Z → partons, fully showered & matched. 

No hadronization.)

1000 SHOWERS

(example of sta
te of th

e art)
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?
Changing Paradigm
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Ask:
Is it possible to use the all-orders structure that the shower 
so nicely generates for us, as a substrate, a stratification, 
on top of which fixed-order amplitudes could be 
interpreted as finite corrections?

Answer:
Used to be no. 

First order worked out in the 80s (Sjöstrand, the PYTHIA correction), 
but beyond that, the expansions became too complicated

People then resorted to slicing up phase space (fixed-order 
amplitude goes here, shower goes there) → previous slides
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Markovian Evolution

17

Idea: 
Start from quasi-conformal all-orders structure (approximate)

Impose exact higher orders as finite corrections 

Truncate at fixed scale (rather than fixed order)

Bonus: low-scale partonic events → can be hadronized

Problems: 
Traditional parton showers are history-dependent (non-Markovian)

→ Number of generated terms grows like 2N N!

+ Highly complicated expansions

Solution:
Markovian Antenna Showers (VINCIA)

→ Number of generated terms grows like N

self-correcting + simple expansions

Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Traditional Parton Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

“Higher-Order Corrections To Timelike Jets”
Giele, Kosower, Skands, PRD 84 (2011) 054003
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New:  Markov ian pQCD *
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Cutting Edge: 
Embedding virtual amplitudes

= Next Perturbative Order
→ Precision Monte Carlos

“Higher-Order Corrections To Timelike Jets”
GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

*)pQCD : perturbative QCD

Start at Lowest Order

R
e

p
e

a
t
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Speed

19

0.1s

1s

10s

100s

1000s

2 3 4 5 6

Z→n : Number of Matched Legs

0.1s

1s

10s

100s

1000s

10000s

2 3 4 5 6

Z→n : Number of Matched Legs

1. Initialization time
(to pre-compute cross sections and 

warm up phase-space grids)

Time it takes to Hadronize

SHERPA+COMIX

PYTHIA+VINCIA

SHERPA (C
KKW-L)

2. Time to generate 1000 events
(Z → partons, fully showered & matched. 

No hadronization.)

VINCIA (GKS)
Helicity-Sector

1000 SHOWERS

(example of sta
te of th

e art)
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+ Inter faced to PYTHIA 

General-purpose “virtual collider” (begun in 1978, main author: T. Sjöstrand)

Physics Processes, mainly for e+e- and pp/pp beams

Standard Model: Quarks, gluons, photons, Higgs, W & Z boson(s); + Decays
Supersymmetry + Generic Beyond-the-Standard-Model: N. Desai & P. Skands, arXiv:1109.5852 
+ New gauge forces, More Higgses, Compositeness, 4th Gen, Hidden-Valley, …

(Parton Showers) and Underlying Event

PT-ordered showers & multiple-parton interactions: Sjöstrand & Skands,  Eur.Phys.J. C39 (2005) 129

+ more recent improvements: Corke & Sjöstrand, JHEP 01 (2010) 035; Eur.Phys.J. C69 (2010) 1

Hadronization: Lund String

Org “Lund” (Q-Qbar) string: Andersson,  Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1

+ “Junction” (QRQGQB) strings: Sjöstrand & Skands, Nucl.Phys. B659 (2003) 243; JHEP 0403 (2004) 053

Soft QCD: Minimum-bias, color reconnections, Bose-Einstein, diffraction, … 

20

Diffraction: Navin, arXiv:1005.3894

LHC “Perugia” Tunes: Skands, PRD82 (2010) 074018

Color Reconnection: Skands & Wicke, EPJC52 (2007) 133

Bose-Einstein: Lönnblad, Sjöstrand, EPJC2 (1998) 165

Topcites Home 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2007 2008 2009 2010

The 100 most highly cited papers during 2010 in the hep-ph archive

1.  PYTHIA 6.4 Physics and Manual
By T. Sjostrand, S. Mrenna, P. Skands
Published in:JHEP 0605:026,2006 (arXiv: hep-ph/0603175)

Now → PYTHIA 8: 
Sjöstrand, Mrenna, Skands,  
CPC 178 (2008) 852 

http://arXiv.org/abs/arXiv:1109.5852
http://arXiv.org/abs/arXiv:1109.5852
http://arxiv.org/abs/arXiv:1005.3894
http://arxiv.org/abs/arXiv:1005.3894
http://www.slac.stanford.edu/spires/topcites/
http://www.slac.stanford.edu/spires/topcites/
http://www.slac.stanford.edu/spires/topcites/1992/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1992/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1993/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1993/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1994/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1994/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1995/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1995/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1996/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1996/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1997/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1997/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1998/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1998/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1999/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/1999/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2000/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2000/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2001/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2001/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2002/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2002/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2007/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2007/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2008/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2008/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2009/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2009/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2010/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/topcites/2010/eprints/to_hep-ph_annual.shtml
http://www.slac.stanford.edu/spires/find/hep/www?irn=6566170
http://www.slac.stanford.edu/spires/find/hep/www?irn=6566170
http://arXiv.org/pdf/hep-ph/0603175
http://arXiv.org/pdf/hep-ph/0603175
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Confinement

We don’t see quarks and gluons … 

21

Mesons

Quark-Antiquark Bound States

Baryons

Quark-Quark-Quark Bound States
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Linear Confinement

22

Short Distances ~ pQCD

Partons

Long Distances ~ Linear 
Confinement

Hadrons

Lattice QCD: Potential between a 
quark and an antiquark as function of 
distance, R

“Quenched” Lattice QCD

What physical
system has a 
linear potential?
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From Partons to Strings

Motivates a model:
Model: assume the color field collapses into a (infinitely) 
narrow flux tube of uniform energy density κ ~ 1 GeV / fm

→ Relativistic 1+1 dimensional worldsheet – string 

23

Lund String Model of Hadronization

Pedagogical Review: B. Andersson, The Lund model. 
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.
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String Breaks

In “unquenched” QCD
g→qq → The strings would break

24

Illustrations by T. Sjöstrand

String Breaks
(via Quantum Tunneling)

P / exp

 
�m2

q � p2?q



!

simplified colour representation



The (Lund) String Model

25

Map:

• Quarks → String 
Endpoints

• Gluons → Transverse 
Excitations (kinks)

• Physics then in terms of 
string worldsheet 
evolving in spacetime

• Probability of string break 
(by quantum tunneling) 
constant per unit area → 
AREA LAW

Simple space-time picture
Details of string breaks more complicated



Hadron i za t ion : Summar y

Dis tance  Sca le s  ~  10 -15  m = 1  fe rmi 

The problem: 
Given a set of coloured partons resolved at a scale of ~ 1 GeV, need a 
(physical) mapping to a new set of degrees of freedom = colour-
neutral hadronic states.

Numerical models do this in three steps
1. Map partons onto endpoints/kinks of continuum of strings ~ highly 

excited hadronic states (evolves as string worldsheet)

2. Iteratively map strings/clusters onto discrete set of primary hadrons 
(string breaks, via quantum tunneling)

3. Sequential decays into secondary hadrons (e.g., ρ→ππ , Λ0→nπ0, π0→γγ, ...)



Theo ry  ↔  Da ta
Global Comparisons

O v e r  5 0 0  b i l l i o n  s i m u l a t e d  c o l l i s i o n  e v e n t s
6 , 5 0 0  Vo l u n t e e r s

B. Segal, 
P. Skands, 
J. Blomer,
P. Buncic, 

F. Grey, 
A. Haratyunyan, 

A. Karneyeu, 
D. Lombrana-Gonzalez, 

M. Marquina

HERA

SLC

LEP

RHIC

LHC

Tevatron

SPS

ISR

Thousands of measurements

Different energies, acceptance 
regions, and observable defs

Different generators & versions, 
with different setups

LHC@home 2.0
TEST4THEORY

Quite technical
Quite tedious

→
Ask someone else 

everyone

http://lhcathome2.cern.ch/
http://lhcathome2.cern.ch/
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LHC@Home 2.0 - Test4Theory

Idea: ship volunteers a virtual atom smasher                                   
(to help do high-energy theory simulations)

Runs when computer is idle. Sleeps when user is working. 

Problem: Lots of different machines, architectures 
Use Virtualization (CernVM) → provides standardized computing 
environment on any machine (in our case Scientific Linux)

→ replica of our normal working environment. Factorization of IT and Science

Infrastructure; Sending Jobs and Retrieving output
Based on BOINC platform for volunteer clouds (but can also use other 
distributed computing resources, like GRID or traditional farms)

New aspect: virtualization, never previously done for a volunteer cloud

28

http://lhcathome2.cern.ch/test4theory/

(tedious, technical)

http://lhcathome2.cern.ch/test4theory/
http://lhcathome2.cern.ch/test4theory/
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Last 24 Hours: 2853 machines

29

Next Big Project : Citizen Cyberlab (3.4M€), interact with simulations to learn physics, just started … 

New Users/
Day

May June July Aug Sep

4th July
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Results → mcplots.cern.ch

30

M C P L O T S→ Constraints on non-perturbative model parameters

( T o t a l  n u m b e r  o f  p l o t s  ~  5 0 0 , 0 0 0 )



B eyo n d  Pe r t u r b a t i o n  T h e o r y
Better pQCD →  Better non-perturbat ive constraints

Soft QCD & Hadronization: 
    Less perturbat ive ambiguity →  improved c lar i ty
    Prepare the way to te l l  new ideas apart from old

ALICE/RHIC: 
    pp as reference for AA
    Col lect ive (soft)  ef fects in pp?



B eyo n d  C o l l i d e r s ?

ISS, March 28, 2012
Aurora and sunrise over Ireland & the UK

Dark-matter annihilation: 
    Photon & part ic le spectra

Cosmic Rays: 
    Extrapolat ions to ul tra-high energies

Other uses for a high-precis ion fragmentat ion model
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Summary

QCD phenomenology is witnessing a rapid 
evolution:

Driven by demand of high precision for LHC environment

Non-perturbative QCD is still hard
Lund string model remains best bet, but ~ 30 years old

Lots of input from LHC (THANK YOU to the experiments!)

“Solving the LHC” is both interesting and rewarding
New ideas needed and welcome on both perturbative and 
non-perturbative sides → many opportunities for theory-
experiment interplay

Key to high precision → max information about the Terascale

33



T h e  S t ro n g  C o u p l i n g

Bjorken  sca l i ng
To f i r s t  approx imat ion , QCD i s 

SC ALE INVARIANT
(a .k . a . con forma l )

A  j e t  i n s ide  a  j e t  i n s ide  a  j e t 
i n s ide  a  j e t  … 

I f  the  s t rong  coup l i ng  d idn ’t 
“ run” , th i s  wou ld  be  abso lu te ly 

t rue  (e . g . , N=4 Supersymmetr i c  Yang -Mi l l s ) 

As  i t  i s , α s on ly  runs  s low ly 
( logar i thmica l l y )  →  c an  s t i l l  g a in 

i n s i gh t  f rom f r ac ta l  ana log y

Note: I use the terms “conformal” and “scale invariant” interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance
But examples of scale-invariant field theories that are not conformal are rare (eg 6D noncritical self-dual string theory)
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Conformal QCD

Bremsstrahlung
Rate of bremsstrahlung jets mainly depends on the RATIO 
of the jet pT to the “hard scale”

σX(j ≥ 5 GeV)

σX

σX(j ≥ 50 GeV)

σX

qj

qi

qj

p⊥ = 5 GeV

mX

qj

qi

qj

p⊥ = 50 GeV

10mX

Rate of 5-GeV jets
in X production

Eg., Drell-Yan

σX(j ≥ 5 GeV)

σX

σX(j ≥ 50 GeV)

σX

qj

qi

qj

p⊥ = 5 GeV

mX

qj

qi

qj

p⊥ = 50 GeV

10mX≈
Rate of 50-GeV jets
in production of 10X

Eg.,Heavy Particle at LHC

35
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Example: 

SUSY pair production at 14 TeV, with MSUSY ≈ 600 GeV 

36

Naively, QCD radiation suppressed by αs≈0.1
Truncate at fixed order = LO, NLO, …

But beware the jet-within-a-jet-within-a-jet …

Conformal QCD in Action

100 GeV can be “soft” at the LHC

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger 
than naive estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger 
than total cross section → 

not under control
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(Parton Distributions)
Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

37

Illustration from T. Sjöstrand

→ Lifetime of fluctuations ~ 1/Mh
 

Hard incoming probe interacts over much shorter time scale ~ 
1/Q

On that timescale, partons ~ frozen 

Hard scattering knows nothing of the target hadron apart from the fact that 
it contained the struck parton

Partons within clouds 
of further partons, 
constantly emitted 
and absorbed

For hadron to remain 
intact, virtualities k2 < 

Mh
2

 High-virtuality 
fluctuations suppresed 

by powers of ↵sM2
h

k2

Mh : mass of hadron
k2 : virtuality of fluctuation
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(Factorization Theorem)

Example: DIS

38

(Collins, Soper, 1987)

Sum over
Initial (i)

and final (f)
parton flavors

= Final-state 
phase space

�f Differential partonic
Hard-scattering

Matrix Element(s)

�

`h =
X

i

X

f

Z
dxi

Z
d�f fi/h(xi, Q

2
F )

d�̂

`i!f (xi,�f , Q
2
F )

dxi d�f

→ We really can write the cross section in factorized 

= PDFs
Universal

Constrained
by fits to data

fi/h

�Q2

Incoming 
Scattere

Scattere

Deep 
Inelastic 

Scattering 
(DIS)

(By “deep”, fi/h

�̂
xi

f

Struck 
Hadron

“Beam 
Remnan

Momentu
m 

Fraction

See also electron-
nucleon scattering in 

lectures
by K. Assamagan
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 Realized by Event evolution in Q = fractal scale (virtuality, pT, formation time, …) 

Resolution scale
t = ln(Q2)

Probability to remain 
“unbranched” from t0 to t
→ The “Sudakov Factor”

= Approximation to Real Emissions

= Approximation to Loop Corrections

NF (t)

NF (t0)
= �F (t0, t) = exp

✓
�
Z

d�F+1

d�F

◆

dNF (t)

dt
= �d�F+1

d�F
NF (t)
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Last Ingredient: Loops

P. Skands Introduction to QCD

F @ LO⇥LL(unitary)

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Figure 20: Coefficients of the perturbative series covered by LO + LL calculations, impos-
ing unitarity order by order for each n = k + `. Green (darker) shading represents the full
perturbative coefficient at the respective k and `. Yellow (lighter) shading represents an LL
approximation to it.

calculation, the constraint of unitarity must also be explicitly imposed, which furnishes an
approximation to all-orders loop corrections as well. Let us therefore emphasize that figure 19
is included for pedagogical purposes only; all resummation calculations, whether analytical
or parton-shower based, include virtual corrections as well and consequently yield finite total
cross sections, as will now be described.

3.2.2 Step Two: Infinite Loops

Order-by-order unitarity, such as used in the KLN theorem, implies that the singularities caused
by integration over unresolved radiation in the tree-level matrix elements must be canceled,
order by order, by equal but opposite-sign singularities in the virtual corrections at the same
order. That is, from equation (52), we immediately know that the 1-loop correction to d�F

must contain a term,

2Re[M(0)
F M(1)⇤

F ] � �g2s NC

���M(0)
F

���
2

Z
dsij dsjk

16⇡2sijk

✓
2sik

sijsjk
+ less singular terms

◆
, (56)

that cancels the divergence coming from equation (52) itself. Further, since this is universally
true, we may apply equation (56) again to get an approximation to the corrections generated
by equation (52) at the next order and so on. By adding such terms explicitly, order by order,
we may now bootstrap our way around the entire perturbative series, using equation (52) to
move horizontally and equation (56) to move along diagonals of constant n = k + `. Since
real-virtual cancellations are now explicitly restored, we may finally extend the integrations
over all of phase space, resulting in the picture shown in figure 20.

The picture shown in figure 20, not the one in figure 19, corresponds to what is actually
done in resummation calculations, both of the analytic and parton-shower types17. Physically,
there is a significant and intuitive meaning to the imposition of unitarity, as follows.

Take a jet algorithm, with some measure of jet resolution, Q, and apply it to an arbitrary
sample of events, say dijets. At a very crude resolution scale, corresponding to a high value

17In the way these calculations are formulated in practice, they in fact rely on one additional property, called
exponentiation, that allows us to move along straight vertical lines in the loops-and-legs diagrams. However, since
the two different directions furnished by equations (52) and (56) are already sufficient to move freely in the full
2D coefficient space, we shall use exponentiation without extensively justifying it here.

— 38 —

=

→ Virtual (loop) correction:

Loop = - Int(Tree) + F
Neglect F → Leading-Logarithmic (LL) 

Approximation

Kinoshita-Lee-Nauenberg:

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Unitarity (KLN):

Singular structure at loop level 
must be equal and opposite to 
tree level

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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1 1

i

j

k

I

i
j

k

I

m+1 m+1

K

K

VINCIA
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Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003
Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Virtual Numerical Collider with 
Interleaved Antennae

Written as a Plug-in to PYTHIA 8
C++ (~20,000 lines)

Based on antenna factorization
- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons)

Resolution Time

Infinite family of continuously deformable QE

Special cases: transverse momentum, invariant mass, energy
+ Improvements for hard 2→4: “smooth ordering”

Radiation functions

Written as Laurent-series with arbitrary coefficients, anti 
Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX 
+ Massive antenna functions for massive fermions (c,b,t)

Kinematics maps

Formalism derived for infinitely deformable κ3→2

Special cases: ARIADNE, Kosower, + massive generalizations

Mass-Ordering p?-ordering Energy-Ordering
(m2

min) (

⌦
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
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To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
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The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.
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energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

To obtain simple forms for the antenna integrals carried out below, we work with two possible
⇣ definitions. For each antenna integral, we simply choose whichever ⇣ definition gives the simplest
integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
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variables, which contain the non-analytic function
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), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
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. For the other
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and y
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Hel ic i t ies

Traditional parton showers use the standard Altarelli-Parisi kernels, P(z) 
= helicity sums/averages over:

41

Larkoski, Peskin, PRD 81 (2010) 054010 
+ Ongoing, with A. Larkoski (MIT) & J. Lopez-Villarejo (CERN)

++ �+ +� ��
g+ ! gg : 1/z(1� z) (1� z)3/z z3/(1� z) 0
g+ ! qq̄ : - (1� z)2 z2 -
q+ ! qg : 1/(1� z) - z2/(1� z) -
q+ ! gq : 1/z (1� z)2/z - -

Table 1: Helicity-dependent Altarelli-Parisi splitting functions P (z) for splittings a ! bc, with z defined as
the energy fraction taken by parton b. The labels in the top row denote the helicities of the two final particles in
the order they appear: (hb, hc). The empty columns are forbidden by quark chiral symmetry. By the P and C
invariance of QCD, the same expressions apply after exchanging � $ + or q $ q̄.

The VINCIA Monte Carlo is a dipole-antenna shower [13] based on nested 2 ! 3 splitting
processes. This splitting can be represented as IK ! ijk, for initial partons I , K and final partons i,
j, k. As VINCIA works in the color-ordered limit of QCD, the initial and final partons are assumed
to be in color order, as well. We will also assume that all partons are massless, unless otherwise
specified. The phase space for emission is defined by the dimensionless variables yij and yjk where

yij =
2pi · pj

s
, yij =

2pj · pk
s

, (2)

and s ⌘ (pi + pj + pk)
2
= (pI + pK)

2 is the invariant mass of the dipole antenna system. The phase
space of the emission is defined by the triangle yij , yjk � 0, yij + yjk  1.

The probability of emission is governed by the antenna function which is a function of all relevant
momenta, quantum numbers and the formulation of the shower. For the splitting IK ! ijk, the
antenna function can be expressed in the form

a
type(order)
j/IK (pi, pj , pk) , (3)

where type refers to global or sector antennae and order is the order in ↵s to which the antennae
are computed. When obvious from context, the superscripts will be omitted. In this paper, we will
consider exclusively the lowest order antenna functions and so we can define the color- and coupling-
stripped antenna

aj/IK(pi, pj , pk) = g2sCj/IK āj/IK(pi, pj , pk) . (4)

For simplicity, we will work with the color- and coupling-stripped antenna in the following. For
massless partons, āj/IK(pi, pj , pk) is a function of the kinematic invariants yij and yjk only.

The unpolarized global and sector antennae used in VINCIA were defined in [7, 9, 13]. We wish
to extend the global and sector antennae to include full helicity dependence of all partons in the an-
tenna. Our discussion will only include antennae in which all particles are massless. Antenna splitting
functions including helicity dependence were defined in [10] as ratios of matrix elements, but here,
we will present a general treatment of the form of the antennae. There are many constraints that must
be imposed on the antennae to determine the singular terms; most importantly, the helicity-dependent
antenna functions must appropriately reproduce the helicity-dependent Altarelli-Parisi splitting func-
tions in the collinear limits. Note that this only constrains the singular terms of the antenna; the non-
singular terms are unconstrained and can be interpreted as uncertainties in higher log-order terms.
Also, when summed over final parton helicities, the antenna functions should reproduce the unpo-
larized antennae functions, up to terms that are non-singular. In the following subsections, we will
discuss the construction of global and sector helicity-dependent antennae.

Generalize these objects to dipole-antennae

MHV

NMHV

P-wave

P-wave
→ Can match to individual helicity 
amplitudes rather than helicity sum
→ Fast! (gets rid of another factor 2N)

→ Can trace helicities through shower

→ Eliminates contribution from unphysical 
helicity configurations

P(z)

a

b c

1-z

z

a→bc

E.g.,⇥ 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2jk
yij

y2ij
yjk

1
yjk(1�yij)

1
yij(1�yjk)

1 yij yjk

qq̄ ! qgq̄
++ ! +++ 1 0 0 0 0 0 0 0 0 0 0 0
++ ! +�+ 1 -2 -2 1 1 0 0 0 0 2 0 0
+� ! ++� 1 0 -2 0 1 0 0 0 0 0 0 0
+� ! +�� 1 -2 0 1 0 0 0 0 0 0 0 0
qg ! qgg
++ ! +++ 1 0 0 0 0 0 0 1 0 0 0 0
++ ! +�+ 1 -2 -3 1 3 0 -1 0 0 3 0 0
++ ! ++� 0 0 -1 0 -1 0 -1 1 0 0 0 0
+� ! ++� 1 0 -3 0 3 0 -1 0 0 0 0 0
+� ! +�� 1 -2 0 1 0 0 0 1 0 0 0 0
+� ! +�+ 0 0 -1 0 -1 0 -1 1 0 0 0 0
gg ! ggg
++ ! +++ 1 0 0 0 0 0 0 1 1 0 0 0
++ ! +�+ 1 -3 -3 3 3 -1 -1 0 0 3 1 1
++ ! ++� 0 0 -1 0 -1 0 -1 1 0 0 0 0
++ ! �++ 0 -1 0 -1 0 -1 0 0 1 0 0 0
+� ! ++� 1 0 -3 0 3 0 -1 0 1 0 0 0
+� ! +�� 1 -3 0 3 0 -1 0 1 0 0 0 0
+� ! +�+ 0 0 -1 0 -1 0 -1 1 0 0 0 0
+� ! �+� 0 -1 0 -1 0 -1 0 0 1 0 0 0
qg ! qq̄0q0

++ ! ++� 0 0 0 0 0 0 1 0 0 0 0 0
++ ! +�+ 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! ++� 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! +�� 0 0 0 0 0 0 1 0 0 0 0 0
gg ! gq̄q
++ ! ++� 0 0 0 0 0 0 1 0 0 0 0 0
++ ! +�+ 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! ++� 0 0 1 0 -2 0 1 0 0 0 0 0
+� ! +�+ 0 0 0 0 0 0 1 0 0 0 0 0

Table 4: Table of coefficients for helicity-dependent sector antenna functions. By the C and P invariance of
QCD, the same expressions apply with + $ �, q $ q̄. All other antennae are zero. These are the default
assignments in VINCIA. The finite terms are chosen so that the antennae are positive on all of final state phase
space.
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Shower Types

42

HI IK KL

H I K L

Coll(I) Soft(IK)

Parton Shower (DGLAP) aI aI + aK

Coherent Parton Shower (HERWIG [12, 40], PYTHIA6 [11]) ΘIaI ΘIaI +ΘKaK

Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32],
VINCIA)

aIK + aHI aIK

Sector Dipole-Antenna (LP [41], VINCIA) ΘIKaIK +ΘHIaHI aIK

Partitioned-Dipole Shower (SK [23], NS [42], DTW [24],
PYTHIA8 [38], SHERPA)

aI,K + aI,H aI,K + aK,I

Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity
of the IK pair, respectively, originate in different shower types. (ΘI and ΘK represent angular vetos
with respect to partons I andK , respectively, and ΘIK represents a sector phase-space veto, see text.)

where the gluon radiation function has absorbed a factor of 2 on the r.h.s. of the last line, due to the
normalization choice. We note that, although these expressions look quite different from the dipole
formula, eq. (19), they lead to identical singularities. This was shown in ref. [29] by identifying z as
the Lorentz invariant energy fraction taken by the quark, z = xi/(xi + xk), and adding the radiation
from the antiquark, q̄K → gj q̄k.

Shared Singularities: This examination of the different presentations of singularities brings us to
the issue of “shared singularities”. In traditional parton showers, as we have just seen, the full leading-
log radiation pattern can only be obtained after summing over pairs of partons (which each radiate as
independent monopoles), and care must be taken in the construction of the shower to make this sum
approximately coherent to reproduce the correct singular behavior for soft wide-angle radiation. This
dipole singularity is the simplest case of what we shall generally refer to as a shared — or multipole
— singularity below; radiation whose full singularity structure (in a particular phase-space limit) can
only be recovered after summing over two or more radiators.

A chain of such uniquely labeled and color ordered gluons, which could, e.g., represent a shower
“event record” at a given point during its evolution, is illustrated in fig. 2. Below the schematic drawing
we give an overview of how the full collinear singularity of parton I , and the full soft singularity of
the IK pair, would be obtained for five different kinds of parton shower models, as follows.

In a traditional parton shower, the full collinear singularity of each parton is contained in the
DGLAP splitting kernel, P (z), that generates radiation off that parton. Since no other radiators share
that collinear direction, there is no double counting at the LL level. (The kernel P (z) constitutes
a complete subtraction term for the collinear singularities in real-emission contributions to an NLO
calculation.) However, in this approach, the soft (eikonal) singularity between the IK pair must be
obtained by summing the radiation functions of partons I andK together, and therefore it is essential
in this type of approach that both the radiation functions and the shower phase-space factorization
represent a correct partitioning of the soft region, with no so-called dead or double-counted zones.

In the early eighties it was shown [40] that additional coherence effects can also be taken into
account in this language, albeit approximately, by imposing angular ordering during shower evolu-

9

Traditional vs Coherent vs Global vs Sector vs Dipole
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The Denominator    v
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In a traditional parton shower, you would face the 
following problem:

Existing parton showers are not really Markov Chains

Further evolution (restart scale) depends on which branching 
happened last → proliferation of terms 

Number of histories contributing to nth
 branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms( ~ +

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms

After 3 branchings: 48 terms
After 4 branchings: 384 terms

|MF |2

|MF+1|2
LL⇠

X

i2ant

ai |MF |2

ai !
|MF+1|2P
ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at 
the multi-parton level)
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n

Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was 
produced

44

Matched Markovian Antenna 
Shower:

After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms

After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ Sector antennae 
→ 1 term at any order

(+ generic Lorentz-
invariant and on-
shell phase-space 
factorization)

Antenna showers: one term per parton 
pair

2nn! → n!

Larkosi, Peskin,Phys.Rev. D81 (2010) 054010
Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Giele, Kosower, Skands, PRD 84 (2011) 
054003 
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Effective 2→4

Generate Branchings without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching

+ smooth ordering beyond matched multiplicities
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Smooth Transverse-Momentum-Ordering (VINCIA)
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p� and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z � 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Transverse-Momentum-Ordering (ARIADNE)
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p�, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : ⌃ord PLL ⇤ PimpPLL =

p̂2
�

p̂2
� + p2

�
PLL , (94)

where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
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�, the net effect of this
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then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including

35

: last branching

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/p

2 T2p
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (smooth)T
2   ORD = p

>4<R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

2
Z/m2

T1
4pln

-5 -4 -3 -2 -1 0

2 T1
/p

2 T2p
ln

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 qqgg→Z
VINCIA 1.025

ANT = DEF

ARψ   KIN = 

 (smooth)2
D   ORD = m

>4<R

→
 O

rd
er

ed
   

|  
 2

nd
   

|  
 U

no
rd

er
ed

 
←

→ Soft   |   1st Branching   |   Hard ← 

Figure 13: The value of ⌅R4� differentially over 4-parton phase space, with p� ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p� (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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where p̂� is the smallest p� scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p� scale of that topology), and p2

� is the scale of the trial
2 ⇤ 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
�, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
� + p2

�). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p� ⇧ p̂�. It
then drops off to 1

2a for p� = p̂�, and finally tends smoothly to zero in the limit of extreme unordering,
p� ⇥ p̂�.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p� in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p�, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z ⇤ 4, 5, and 6 partons, including
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Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p� and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of ⇤ = 1� T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p�.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

enhancements of the type

↵n
s ln

m2n

✓
Q2

F

Q2
k

◆
(36)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [47, 48], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences13, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k+` = n finite. Nonetheless, since
this cancellation happens between contributions that formally live in different phase spaces,
a main aspect of loop-level higher-order calculations is how to arrange for this cancellation
in practice, either analytically or numerically, with many different methods currently on the
market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation
is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence

13The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)
0 , we intend

�
(1)
0 =

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ] , (37)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (35) to order k + ` = 1. In particular, �

(1)
0 should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵2
s and hence forms part

of the NNLO coefficient �
(2)
0 ). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�NLO
0 =

Z
d�0 |M(0)

0 |2 +

Z
d�1 |M(0)

1 |2 +

Z
d�0 2Re[M(1)

0 M(0)⇤
0 ]

= �
(0)
0 + �

(0)
1 + �

(1)
0 ,

(38)

with �
(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
must still be resolved in the final-state integrations,

�NLO
1 (p?min) =

Z

p?>p?min

d�1 |M(0)
1 |2 +

Z

p?1

>p?min

d�2 |M(0)
2 |2 +
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d�1 2Re[M(1)
1 M(0)⇤

1 ]
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(0)
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(0)
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(1)
1 (p? > p?min) ,

(39)
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(from PS, Introduction to QCD, TASI 2012, arXiv:1207.2389)
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made up of two dipole “ends”, hence the antenna formalism tends to generate somewhat fewer
terms. At NLO, however, there is no fundamental incompatibility — the antennae we use here
can always be partitioned into two dipole ends, if so desired. (Note: only the antenna method
has been successfully generalized to NNLO [57, 58]. Other NNLO techniques, not covered
here, are sector decomposition, see [59, 60], and the generic formalism for hadroproduction of
colorless states presented in [61].)

At NLO, the idea with subtraction is thus to rewrite the NLO cross section by adding and
subtracting a simple function, d�S , that encapsulates all the IR limits,

�NLO
= �Born

+

Z
d�F+1

⇣
|M(0)

F+1|2 � d�NLO
S

⌘

| {z }
Finite by Universality

+

Z
d�F 2Re[M(1)

F M(0)⇤
F ] +

Z
d�F+1 d�NLO

S

| {z }
Finite by KLN

. (42)

The task now is to construct a suitable form for d�S . A main requirement is that it should be
sufficiently simple that the integral in the last term can be done analytically, in dimensional
regularization, so that the IR poles it generates can be canceled against those from the loop
term.

To build a set of universal terms that parametrize the IR singularities of any amplitude, we
start from the observation that gauge theory amplitudes factorize in the soft limit, as follows:

|MF+1(. . . , i, j, k, . . .)|2 jg!0! g2s NC

 
2sik

sijsjk
� 2m2

i

s2ij
� 2m2

k

s2jk

!
|MF (. . . , i, k, . . .)|2 ,(43)

where parton j is a soft gluon, partons i, j, and k form a chain of color-space index contractions
(we say they are color-connected), gs is the strong coupling, and the terms in parenthesis are
called the soft eikonal factor. We here show it including mass corrections, which appear if i
and k have non-zero rest masses, with the invariants sab then defined as

sab ⌘ 2pa · pb = (pa + pb)
2 � m2

a � m2
b . (44)

The color factor, NC , is valid for the leading-color contribution, regardless of whether the
i and k partons are quarks or gluons. At subleading color, an additional soft-eikonal factor
identical to the one above but with a color factor proportional to �1/NC arises for each qq̄
pair combination. This, e.g., modifies the effective color factor for qq̄ ! qgq̄ from NC to
NC(1� 1/NC) = 2CF , in agreement with the color factor for quarks being CF rather than CA.

Similarly, amplitudes also factorize in the collinear limit (partons i and j parallel, so
sij ! 0), in which the eikonal factor above is replaced by the famous Altarelli-Parisi splitting
kernels [34], which were already mentioned in section 2.2, in the context of PDF evolution.
They are also the basis of conventional parton-shower models, such as those in PYTHIA [62].
We return to parton showers in section 3.2.

Essentially, what antenna functions, CS dipoles, and the like, all do, is to combine the soft
(eikonal) and collinear (Altarelli-Parisi) limits into one universal set of functions that achieve
the correct limiting behavior for both soft and collinear radiation. To give an explicit example,
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Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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String #1 String #2 String #3

Example: Z0 → qq

Coherence of pQCD cascades → not much “overlap” between strings 
→ planar approx pretty good

LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc
2 )

*) except as reflected 
by the 
implementation of 
QCD coherence 
effects in the Monte 
Carlos via angular or 
dipole ordering
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z

(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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Hadronization
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cuto↵ Q
had

, may be larger than the purely non-perturbative /⇡ above, to account for e↵ects
of additional unresolved soft-gluon radiation below Q

had

. In principle, the magnitude of this
additional component should scale with the cuto↵, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are di�cult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/⇡ and K⇤/⇢ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z
(1� z)a exp

✓
�b (m2

h

+ p2

?h

)

z

◆
, (1.11)

1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.
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String Break

q

leftover string,
further breaks

a) b)

Fig. 20: a) Illustration of string breaking by quark pair creation in the string field. b) Illustration of the algo-
rithmic choice to process the fragmentation from the outside-in, splitting off a single on-shell hadron in each
step.

A straightforward Lorentz-invariant description of this object is provided by the massless relativistic
string in 1+1 dimensions, with no transverse degrees of freedom. The mathematical, one-dimensional
string can be thought of as parameterizing the position of the axis of a cylindrically symmetric flux
tube. (Note that the expression “massless” is somewhat of a misnomer, since  effectively corresponds
to a “mass density” along the string.)

As the q and q̄ move apart, their kinetic energy is gradually converted to potential energy, stored
in the growing string spanned between them. In the “quenched” approximation, in which g ! qq̄ split-
tings are not allowed, this process would continue until the endpoint quarks have lost all their momen-
tum, at which point they would reverse direction and be accelerated by the now shrinking string. In
the real world, quark-antiquark fluctuations inside the string field can make the transition to become
real particles by absorbing energy from the string, thereby screening the original endpoint charges
from each other and breaking the string into two separate colour-singlet pieces, (qq̄)! (qq̄

0
) + (q

0
q̄),

illustrated in figure 20 a. This process then continues until only ordinary hadrons remain. (We will
give more details on the individual string breaks below.) More complicated multi-parton topologies
including gluons are treated by representing gluons as transverse “kinks”. Thus soft gluons effec-
tively “build up” a transverse structure in the originally one-dimensional object, with infinitely soft
ones absorbed into the string without leading to modifications. For strings with finite-energy kinks,
the space-time evolution is then slightly more involved [68], and modifications to the fragmentation
model to handle stepping across gluon corners have to be included, but the main point is that there
are no separate free parameters for gluon jets. Differences with respect to quark fragmentation arise
simply because quarks are only connected to a single string piece, while gluons have one on either
side, increasing the energy loss per unit (invariant) time from a gluon to the string by a factor of 2
relative to quarks, which can be compared to the ratio of colour Casimirs CA/CF = 2.25.

Since the string breaks are causally disconnected (as can easily be realized from space-time
diagrams [68]), they do not have to be considered in any specific time-ordered sequence. In the
Lund model, the string breaks are instead generated starting with the leading hadrons, containing the
endpoint quarks, and iterating inwards towards the centre of the string, alternating randomly between
fragmentation off the left- and right-hand sides, respectively, figure 20b. This has the advantage that a
single on-shell hadron can be split off in each step, making it straightforward to ensure that only states
consistent with the known spectrum of hadron resonances are produced, as will be discussed below.

The details of the individual string breaks are not known from first principles. The Lund model
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Figure 1.2: Illustration of string breaking by quark pair-creation in the string field.

Consider a color-connected quark-antiquark pair with no intermediate gluons emerging
from the parton shower (like the q̄q pair in the center of fig. 1.1), e.g. a red q and an antired
q̄. As the charges move apart, linear confinement implies that a potential V (r) =  r is
reached for large distances r. (At short distances, there is a Coulomb term / 1/r as well,
but this is neglected in the Lund string.) This potential describes a string with tension
 ⇠ 1 GeV/fm ⇠ 0.2 GeV2. The physical picture is that of a color flux tube being
stretched between the q and the q̄. As the string grows, the non-perturbative creation of
quark-antiquark pairs can break the string, via the process (qq̄) ! (qq̄0) + (q0q̄), illustrated
in figure 1.2. More complicated color-connected quark-antiquark configurations involving
intermediate gluons (like the q̄gggq and q̄gq systems on the left and right part of fig. 1.1)
are treated by representing gluons as transverse “kinks”. Thus soft gluons e↵ectively build
up a transverse structure in the originally one-dimensional object, with infinitely soft ones
smoothly absorbed into the string. For strings with finite-energy kinks, the space-time
evolution is slightly more involved [48], but the main point is that there are no separate
free parameters for gluon jets. Di↵erences with respect to quark fragmentation arise simply
because quarks are only connected to a single string piece, while gluons have one on either
side, increasing their relative energy loss (per unit invariant time) by a factor of 2, similar
to the ratio of color Casimirs C

A

/C
F

= 2.25.
Since the string breaks are causally disconnected (as can be realized from space-time

diagrams [48]), they do not have to be considered in any specific time-ordered sequence. In
the Lund model, the string breaks are generated starting with the leading (“outermost”)
hadrons, containing the endpoint quarks, and iterating inwards towards the center of the
string, alternating randomly between the left and right sides. One can thereby split o↵ a
single on-shell hadron in each step, making it straightforward to ensure that only states
consistent with known hadron states are produced.

For each breakup vertex, quantum mechanical tunneling is assumed to control the masses
and p? kicks that can be produced, leading to a Gaussian suppression

Prob(m2

q

, p2

?q

) / exp

✓�⇡m2

q



◆
exp

✓�⇡p2

?q



◆
, (1.10)

where m
q

is the mass of the produced quark flavor and p? is the non-perturbative transverse
momentum imparted to it by the breakup process (the antiquark has the same mass and
opposite p?), with a universal average value of

⌦
p2

?q

↵
= /⇡ ⇠ (250 MeV)2. The charm

and bottom masses are su�ciently heavy that they are not produced at all in the soft
fragmentation. The transverse direction is defined with respect to the string axis, so the
p? in a frame where the string is moving will be modified by a Lorentz boost. Note that
the e↵ective amount of “non-perturbative” p?, in a Monte Carlo model with a fixed shower
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